3. WATER SERVICES ASSET MANAGEMENT

Table 3.1: Master Plan for Water Services Asset Management					
Section	Yes / No				
General Information	Is there a Master Plan that addresses this problem?	Yes			
General mormation	Does this Plan address this problem 100%?	Yes			
Operation	Is there a Master Plan that addresses this problem?	Yes			
Operation	Does this Plan address this problem 100%?	Yes			
Functionality Observation	Is there a Master Plan that addresses this problem?	Yes			
Functionality Observation	Does this Plan address this problem 100%?	Yes			
Asset Assessment Spectrum	Is there a Master Plan that addresses this problem?	Yes			
Asset Assessment Spectrum	Does this Plan address this problem 100%?	Yes			
Water and Sanitation Schemes	Is there a Master Plan that addresses this problem?	Yes			
Water and Samalion Schemes	Does this Plan address this problem 100%?	Yes			

3.1 GENERAL INFORMATION

3.1.1 Asset Management Plan

Bitou Municipality will develop an infrastructure maintenance plan that is linked to an integrated asset management system to ensure preventative maintenance. Depreciation, repairs and maintenance as well as the acquisition of assets will all increase collectively to ensure efficient and effective budgeting. This will entail the review of the current budgeting strategy and process as well as expenditure and management systems to ensure efficient and effective service delivery in line with Bitou Municipality priorities. It will require the review of revenue management systems in order to maximise revenue generation possibilities and improve revenue performance. The cash and debt management strategies and practices will have to be reviewed and internal controls and delegations regarding financial management should be re-assessed. Asset management through an integrated infrastructure and asset management plan must also be implemented. The review of governance practices in the Supply Chain Management practices should be done and proper controls and risk management practices should be implemented.

An Asset Management Plan (AMP) to ensure efficient, effective and optimal management, operation and maintenance of all assets, which includes treatment plants, reservoirs, structures, buildings, pipelines, sites, etc. The purpose of the AMP is to:

- Ensure the operation and maintenance functions are well planned.
- Demonstrate responsible management.
- Justify and communicate funding requirements.
- Service provisioning complies with regulatory requirements.

An AMP normally includes the following:

- documents the nature, extent, age, utilisation, condition, performance and value of the infrastructure work;
- identifies existing and target levels of service, as well as expected changes in demand;
- identifies the life-cycle management needs of the infrastructure (development, renewal, operations and maintenance);
- assesses capital and operational budget needs; and
- identifies infrastructure asset management improvement needs.

Bitou Municipality needs to differentiate between budget allocated towards the operation and maintenance of the water and sewerage infrastructure and the budget allocated towards the replacement of the water and sewerage infrastructure. A budget of approximately 2% of the total asset value per annum should be allocated towards the replacement of the existing water and sewerage infrastructure. In the case of operations and maintenance of the system, a budget of approximately 1% to 2% of the value of the system is typically required to ensure that the system remains in good condition.

A proxy for asset consumption can be considered the level of depreciation each asset incurs on an annual basis. Preserving the investment in existing infrastructure needs to be considered a significant strategy in ensuring the future sustainability of infrastructure and the Municipality's revenue base.

It is important for Bitou Municipality to develop an AMP from their Asset Register. The objective of an AMP is to support the achievement of the strategic goals of the Municipality and facilitate prudent technical and financial decision-making. It is also a vehicle for improved internal communication and to demonstrate to external stakeholders the Municipality's ability to effectively manage its existing infrastructure as well as the new infrastructure to be developed over the next 20 years.

Priority should be given to rehabilitating existing infrastructure as this generally makes best use of financial resources and can achieve an increased in (operational) services level coverage's most rapidly. The preparation of maintenance plans and the allocation of sufficient funding for maintenance are required to prevent the development of a large condition backlog.

It is essential for Bitou Municipality to protect their assets by ensuring that an appropriate maintenance and rehabilitation plan (AMP) is developed and implemented. This plan must be based on the principle of preventative maintenance in order to ensure that, as far as this is practical, damage to assets is prevented before it occurs. Bitou Municipality must ensure that the maintenance and rehabilitation plan is part of the WSDP and that the plan is implemented. Assets must be rehabilitated and / or replaced before the end of their economic life and the necessary capital funds must be allocated for this purpose.

3.1.2 Disaster Management Plan

Bitou Municipality's 2019 Disaster Risk Assessment included the following risks and the risk reduction recommendations.

Table 3.1.2.1: Disa	Table 3.1.2.1: Disaster risks and risk reduction recommendations				
Hazard	Risk Category	Risk Reduction Recommendations			
Animal Diseases	Medium	Improve early warning systems.Improve awareness during Thusong visits.			
Human Diseases	Medium	 Identify high risk areas subject to the outbreak of epidemics. Continue with intensive health interventions. Continue with a structured and comprehensive multi-disciplinary and multi-sectoral strategy and plan that addresses the problem of substance (alcohol and drug) abuse in high risk areas. Develop a strategy aimed at combating women abuse and domestic violence within the municipality. Strengthen disaster mitigation in hospital facilities. Increase infectious disease capacity and infrastructure. Increase youth access to contraceptive and reproductive health care services. A structured programme based on the needs identified in the remote areas to recruit, train and equip volunteers to assist with area based first aid posts. 			
Wildfires	High	 Defensible space for the future. A provincial and / or district standard of permits and database for prescribed burning is compiled. Agricultural developments are planned from the outset to incorporate fire-scaping in defensible spaces, fire-resistant structures, and fire spread patterns into their design. Incentivize farmers to join FPAs Adhere to building codes. Develop and implement an alien invasive clearance and management strategy. Ensure firebreaks are prepared in high-risk zones. Firebreaks and well maintained to ensure that there is little or no vegetation on them without causing any erosion. Early warning strategies to wildland fires be revised and updated. 			

2020-06-30/Bitou Municipality/WSDP for Client

Table 5.1.2.1: DIS	Risk	nd risk reduction recommendations
Hazard	Category	Risk Reduction Recommendations
		Maintain and update an accessible Alien Invasive Species list within municipality.
		 Plan for high-risk periods. Establish a satellite fire station in areas disadvantages by poor response times.
		Delineate buffer zones for alien grass invasion.
		SCFPA optimize their investments in constructing and maintaining firebreaks in relation to
		the value of protected assets.
		 Reduce the number of human-caused wildfires by promoting safe behavior when using fire. Organized Agriculture actively participates and utilizes the impact of recent fires as a
		platform to recruit more members.
		Accelerate access to spatial information.
		Improve knowledge of stack burning.
		 Raising awareness and training of both landowners and agri-workers. Capable managers are employed and skilled to supervise local WoF teams.
		 Wooden Houses needs to be prevented especially along wildfire-urban interfaces.
		800m Urban Interface needs to be mapped for all area to determine areas in need of fire-
		scaping.
		The forestry industry continues to adopt practices and cultivars that minimize risk.
		Maintenance and sustainable use of resources and infrastructure occurs.
		 Insurance Market Correction. A systematic approach to assessing and responding to coastal vulnerability, risks and
		damage is developed between District and Local Municipality.
Regional Sea-	Medium	Delineate and promulgate coastal development setback lines that mitigate against impacts
level Rise	Medium	and reduce risks, and incorporate these into Municipal SDFs.
		 Rehabilitate dunes and beaches. Prepare and implement architectural and urban design guidelines for coastal towns.
		 Improve future coastal modelling.
		Expand and effectively manage a system of coastal protected areas.
		Implement dune rehabilitation plans.
		Enforce the coastal buffer zone.
		• Limit the extension of existing footprints and volumes of structures already in the risk zones.
		Develop and implement an estuarine management programme for Keurbooms/Bitou and Groot River Estuary.
		Implement a coastal education drive.
		Additional activities in River Estuaries (Keurbooms / Bitou, Piesang and Groot River) are
Coastal erosion	Medium	aligned with the River EMPs.Establish an overall conservancy institution for the biodiversity conservation of the coastal
		corridor.
		Enable spatial integration and investment in and protection of, coastal assets.
		Keurboom/Bitou, Piesang and Groot River Estuary breaching protocols are developed.
		Promote sustainable coastal livelihoods among traditional fishing communities in the Western Cape.
		Identify and develop opportunities for work creation in integrated coastal development and
		management.
		Host a public and private coastal education drive.
Storm Surges	High	Raise awareness amongst recreational users.
		Requirements of the ICM Act are included in the Bitou Municipality SDF and IDP revisions.
Severe Weather		 Strengthen physical planning measures. Improve engineering and construction measures.
(Strong winds)	Medium	 Institute and enforce fines for nonadherence to building codes.
(0)		 Develop awareness training and workshops in high risk areas.
Seismic Activity	Medium	The Provincial Seismic Hazard Preparedness Plan is updated.
Celonic Activity		A risk assessment and awareness raising of high-risk areas is conducted.
		• Develop standardized and coordinated tsunami hazard and risk assessment for the coastal
Toupom	Madium	region.
Tsunami	Medium	 Further investigate Tsunami risks for Bitou Municipality. Identify coastal areas vulnerable to tsunami inundation.
		Tsunami evacuation routes are clearly sign-posted.
		Revisit policies that hamper the building of new catchment dams.
		• Diversify farming activities and, where possible, complement with non-farming activities e.g.
		agri-tourism and agri-processing.
Drought	Medium	 Foster and strengthen community participation in planning and implementation of drought management and mitigation actions.
		Improve accuracy of seasonal weather forecasts.
		Augment water supplies.
		Strengthen Management Plans for areas of biodiversity.

Table 3.1.2.1: Disaster risks and risk reduction recommendations				
Hazard	Risk Category	Risk Reduction Recommendations		
		 Safeguard inland water and coastal water resources and manage the sustainable use of water. Promote conservation agriculture. Improve water demand management through drought periods. 		
Floods (Stormwater- related / Coastal / Riverine / Flash / Landslides (Debris Flow))	High	 Strengthen management and institutional measures. Redesign of stormwater norms and standards. Structural measures are planned for high risk areas. Implement a comprehensive Stormwater Management Plan. Improve non-structural measures. Improve physical planning measures. Improve awareness raising. Improve disaster preparedness. Identify critical infrastructure exposed to flooding and establish Contingency Planning. Enforce legal restrictions on Infrastructure placement. Improve disaster relief funding. Restoration of wetlands and riparian zones reduces flooding risk. Participate in the development and implementation of a River Maintenance Management Plan for river(s) flows. 		
Electrical Supply Disruption	Medium	 Source funding to improve institutional management. Prepare policy for sighting and approval of renewable energy projects. Research climate change projections to improve the operational preparedness of electricity grids. Improve Physical Planning Measures. Strengthen Societal Measures. Address Human Settlements and electricity needs in a changing climate. Address Bitou Municipality's energy consumption and management. Reduce risks associated with energy supply. Regulate the format of municipal accounts in more specific terms. Enhance saving opportunities within the built environment. Pursue energy diversification and energy efficiency to transition to a low carbon, sustainable energy future, and delink economic growth from energy use. 		
Sewerage and Waste Removal	Medium	 Promote waste separation at source throughout urban settlements. Rehabilitation of closed landfill sites. Implement a policy for informal reclaimers. Capacitate management and institutional measures. Improve Waste Reporting and Data Management. Develop a densification plan. Develop a comprehensive Stormwater Master Plan. Continue with public cleansing initiatives. Promote and provide guidance on waste-to-energy opportunities. Improve the maintenance and sustainable use of agricultural and ecological resources and infrastructure. Improve Waste Management facilities at informal settlements. On-going Public Awareness and Education campaign regarding Waste Minimization. Bitou Municipality quantifies prevention. Post Collection Recovery rolled out. Conduct a feasibility study of a post Collection Composting. Garden Waste and Builders' Rubble. Manage tyres. Sanitation improves due to compliance of WWTWs. Address inadequate capacities of sewer pump stations and sewer drainage networks. Extension of Basic Services in Informal Areas. Continue with maintenance and upgrade of sewage systems. Address industrial effluent in sewage system. 		
Water supply disruption	Medium	 Improve physical planning measures. Monitor and prevent water resources pollution (estuaries and marine). Water resource protection is based on a participatory approach. Implement a multi-pronged water management strategy. The value of water resources is recognized from an economic point of view and the social and environmental benefits of the resource are understood. Research and forecast the requirements for bulk infrastructure in order to meet future demands. Develop agricultural water demand management programmes, focusing on agricultural areas. Reconsider the National Water Policy Review proposal to abolish WUAs. Specialised monitoring of aquatic ecosystems. 		

	Risk	
Hazard	Category	Risk Reduction Recommendations
		Integrate protection of aquatic ecosystems.
		 Strengthen integrated catchment management. Update the Sustainable Water Plan with new climate change-related information and plans.
		 Protection of water resources through classification of the resource.
		Strengthen assurance of equitable water access that incorporates climate change
		considerations.
		More effective aquifer management is implemented.
		Streamline Data Sharing. Create a controlized reporting mechanism and applied conturing of investive appeales along
		Create a centralized reporting mechanism and spatial capturing of invasive species along sensitive catchment areas.
		WC/WDM is a pre-requisite for undertaking further development of new water supply
		schemes.
		Increase station density to better characterize spatial variability.
		Improve infrastructure refurbishment.Alien invasive species clearing strategy for water catchment areas.
		 Continue addressing the lack of suitable qualified technical staff.
		Implementation of water conservation and demand management at municipal level.
		Track Meteorological and other Parameters to better understand variability.
		Provide development support to the vulnerable.
		Stimulate the local economy.
		Address housing backlogs.
		Create a skills database. Sattlement policies
		Settlement policies.Develop dedicated human settlement legislation.
Civil Unrest	High	Identify areas to cluster public facilities.
		Informal settlements / affordable housing areas are upgraded.
		Manage migration as efficient and effectively as possible.
		• Integrate the spatial component of bulk infrastructure master plans, public transport plans
		and housing / human settlement plans into one SDF, prepared at the appropriate scale (e.g. regional, district or local municipal).
		 Install an affordable, networked fire detector system in informal settlements. Implement an awareness and education programme.
	High	Prepare a policy for the densification of settlements.
		Address staff and skills shortages.
Structural Fires		Improve physical planning measures.
		Strengthen engineering and construction measures.
		Improve access to funding.Ensure building compliance to fire safety standards.
		 Lightning conductors as a prerequisite to thatch roof structures.
		Establish a permanent fire station at Plettenberg Bay Airport.
Aircraft Incidents	Medium	Upgrade Plettenberg Airport.
		Improve landscaping.
		Strengthen physical planning measures.
		Improve engineering and construction measures.
Road Accidents	High	Research impact of climate change on road infrastructure.
	-	Improve the road network.Address operational development priorities.
		Source funds to establish or improve Law enforcement divisions.
		Improve understanding and mitigation of GHG emissions.
		Improve law enforcement.
		Improve physical planning measures.
		Strengthen engineering and construction measures.
Hazmat Incidents	High	Improve management and institutional measures. Strengthen consolity to menage begardeue substance dispessed and improve response to
	riigii	• Strengthen capacity to manage hazardous substance disposal and improve response to disaster events in relation to the spillage of hazardous substances.
		Employ economic measures.
		 Implementation of higher order waste minimization techniques should be implemented to minimize waste generation.
		Early warning system is improved to inform stakeholders.
Marine Pollution /		Research, monitor and implement climate change adaptation measures.
Ocean Spill at	Medium	Implement pollution control and waste management measures in order to prevent, minimize and strictly sector benefit discharges into accepted accepted accepted
Sea		 and strictly control harmful discharges into coastal ecosystems. Develop and implement water quality improvement programmes for prioritised coastal areas
		Improve residential air pollution.

Table 3.1.2.1: Disaster risks and risk reduction recommendations				
Hazard	Risk Category	Risk Reduction Recommendations		
		 Pursue greater cooperation with agricultural authorities to address shared environmental priorities related to air quality management. Strengthen institutional functions. Increase licensing of listed activities. Ambient air quality data is continuously monitored. Update the emissions inventory regularly so as to ensure that the data remains current. Intensify efforts to manage trans-boundary air pollution. Strengthen capacity in air quality management within the Building Control section. Compile an emissions inventory for Bitou Municipality. Improve education and awareness. Motor vehicle emissions. 		
Alien Invasive Species (Vegetative)	High	 Delineate riparian zones according to the DWS policy. Fund alien clearing projects. Ensure that the management of IAPs is consistent with the relevant legislation. Facilitate the development of a protocol to inform prioritization decisions based on scientific research findings. Targeted clearing secures the ecological flow requirements of the rivers and estuaries. Prevent new IAPs establishing or spreading through early detection and rapid response. Maintain and update an accessible endemic species list. Guidelines for future monitoring projects to assess for the efficacy of rotenone treatments with regard to removing alien fish, and for monitoring the responses by macro-invertebrates and fish to these treatments. Collaboration between government departments is ensured by means of appropriate institutions, agreements and / or joint decision-making mechanisms. Investigate possible alternative uses for biomass such as for energy or building materials. 		
Reducing Environmental Vulnerability: Biodiversity Protection	High	 Source funding for long-term climate change research projects. Implement conservation plan for protected and critical biodiversity areas (terrestrial, forest and aquatic). Include landowners in biodiversity protection. Honey bee populations are protected. Support aquaculture farming without compromising the conservation of indigenous fish species. Avifauna is monitored. Develop a conservation plan for coastal areas. Awareness and education on the importance of habitat protection. Improve institutional capacity. Apply indicators to assess and monitor ecosystem health. Improve endangered and endemic animal conservation. Apply unmanned aerial vehicle in monitoring programmes. Manage invasive alien species before it impacts on indigenous biodiversity and ecosystem functioning escalates. A comprehensive fish conservation plan for the WCP with clear goals and project plans is developed. Research climate change impacts on insects. Improve wetland status. Protect the Estuaries (Bitou/Keurboom, Groot and Piesang). Support and market the diversification for farming development. Improve spatial risk mapping of predation. 		
Climate Change	High	 Improve spatial risk mapping of predator. Develop user-friendly sources of information on climate change. Mainstreaming climate change into municipal planning through the Garden Route District Municipality Climate Change Response Framework. Strengthen spatial information on climate change. Climate risk management is integrated into all local planning and regulatory processes. Reduce CHG emissions. Strengthen climate data and services. Improve institutional capacity at municipal level. Planning stresses urban infrastructure as central to the protection of assets amongst poor and food insecure communities. Implement a simple and effective mechanism to raise adequate finance for climate change response projects. Development of DAFF's fisheries climate change adaptation plan. Promote and expand conservation agriculture. Integrate climate change into joint disaster planning and strengthen disaster relief mechanisms. Lead strategic research partnerships. Climate-proof future projects. 		

Table 3.1.2.1: Dis	Table 3.1.2.1: Disaster risks and risk reduction recommendations					
Hazard	Risk Category	Risk Reduction Recommendations				
		 Increase ecological infrastructure to slow, spread and sink water run-off. Water related infrastructure responses. Replace retrofit/upgrade infrastructure. Environmental planning, conservation and management. Relocate infrastructure. Environmental rehabilitation. Improve municipal open space management. Risk and vulnerability mapping. Pollution management. Improve public environmental awareness and coordination. Health management. Water management to improve water security and disaster preparedness. 				

3.1.3 Untreated Effluent Management Plan

There are no known untreated effluent discharged to the environment, as indicated under Section 3.1.3 of Topic 3 of the Administration, Information and Comprehensive Overview Report. The W₂RAP includes Management Procedures and Incident Response and Emergency Protocols, which are discussed in more detail under Section 6.3 of Topic 6.

3.2 FUTURE WATER AND SEWERAGE INFRASTRUCTURE REQUIREMENTS

The 2018/2019 Annual Report list the following challenges for water provision and sanitation reticulation.

Table 3.2.1: Challenges for water provision and sanitation reticulation				
Challenge	Challenge Action to address			
	Water Provision			
Pipe breaks / bursts	See Topic 5			
Water Losses	See Topic 5			
	Sanitation Reticulation			
Load shedding by Eskom	The extensive and higher-level load-shedding by Eskom during the third quarter of 2018/2019 meant that an operating plan had to be put into place, to ensure that facilities (pump stations, WTWs and WWTWs) remained in operation. This required back-up generating power to be installed at some key sites, however this resulted in additional challenges for an already limited staff component and operating budget that will have to be investigated and budgeted for within the 2019/2020 financial year.			
Public unrest	Public unrest because of service delivery in the third quarter of the 2018/2019 year resulted in disruption of services and some damage due to flooding of equipment as a result thereof, however the Municipality is currently investigating and trying to find an amicable solution to these issues.			
Vandalism and security for key sites	Although good strides have been made in addressing the security of key sites, this remains a challenge and the Municipality's commitment to address this is ongoing.			

The Water and Sewer Master Plans (2020) for the various distribution and drainage systems in Bitou Municipality's Management Area recommends upgrades of the water and sewerage infrastructure to the values indicated in the tables below in the foreseeable future in order to accommodate development and population growth according to the SDF.

Table 3.2.2: Summary of the future water infrastructure requirements for Bitou Municipality, as included in the 2020 Water Master Plan							
Scheme	Bulk Pipelines	Water PS	Reservoirs	Internal Reticulation	WDM	wтw	Total
Plettenberg Bay	R91 952 000	R33 389 000	R93 845 000	R88 571 000	R1 069 000	-	R308 826 000
Kurland	R21 697 000	R4 908 000	R10 304 000	R10 449 000	-	R9 317 000	R56 675 000
Natures Valley	-	-	R5 040 000	R706 000	-	-	R5 746 000
Harkerville	-	-	-	R100 000	-	-	R100 000
Total	R113 649 000	R38 297 000	R109 189 000	R99 826 000	R1 069 000	R9 317 000	R371 347 000

Note: Costs include P&G's, Contingencies & Fees, but exclude EIA studies, registration of servitudes and/or land acquisition and VAT.

Table 3.2.3: Summary of the future sewer infrastructure requirements for Bitou Municipality, as included in the 2020 Sewer Master Plan							
Scheme	Sewer Pipelines	Sewer PS	Total				
Plettenberg Bay	R186 736 000	R35 379 000	R222 115 000				
Kurland	R3 124 000	R2 368 000	R5 492 000				
Total	R189 860 000	R37 747 000	R227 607 000				
Natar Casta include D8 Cla Cantinganaica 8 Essa, hut avalue							

Note: C

Costs include P&G's, Contingencies & Fees, but exclude EIA studies, registration of servitudes and/or land acquisition and VAT.

3.2.1 Groundwater infrastructure (Boreholes)

Bitou Municipality is responsible for the operation and maintenance of a number of production and monitoring boreholes in their Management Area. It is therefore critical for Bitou Municipality to monitor on a monthly basis (at least) the static water level (i.e. the level prior to commencement of pumping for the day) in each of their production and monitoring boreholes and the volume of water abstracted. Water quality samples also need to be taken on a seasonal or yearly basis. The daily rainfall for the area should also be recorded. This monitoring data should be processed, analysed and reported on by an experienced hydrogeologist in order to ascertain whether the resource is being sustainably utilised or whether groundwater mining is taking place. Managing groundwater for water supply purposes should have the following three main functions:

- Ensure that the aquifer is used optimally: The aquifer should not be over-pumped as that would negatively impact on its long-term sustainable yield or on the environment. It also means that if the aquifer is being under-utilised, this will become known.
- Ensure that the water quality in the aquifer is not negatively affected: This may be as a result of high abstraction from the aquifer, or from poor groundwater protection (from latrines, animal enclosures, etc.).
- Optimise borehole pumping rates so that the pumping equipment operates efficiently: Pumping rates are frequently set too high and this cause unnecessarily high pumping heads, a waste of energy, and at times, pump failure.

An additional function, which is usually captured in the first two points, is to ensure that environmental integrity is maintained. It is important for Bitou Municipality to focus on aquifer protection, groundwater monitoring and wellfield management, in order to ensure the sustainable use of the groundwater resources. The table below gives an overview of the key groundwater management functions.

Table 3.2.1.1: Key groundwater management functions						
Activity	Responsible Person	Skills and qualifications required	Resources, tools and equipment	Remarks		
Measuring and recording of water levels.	Pump operator	Literacy, numeracy, trained in taking water levels	Dip meter, ruler, log book, pen.	Done as part of operators' regular O&M activities.		
Measuring and recording abstraction	Pump operator	Literacy, numeracy, trained in reading water meters.	Log book, pen	Done as part of operators' regular O&M activities.		
Providing data to the authority that is responsible for water supply on a regular basis.	Pump operator and pump operator supervisor	Literacy, numeracy, keeping records.	Postal service or public transport.	Including as part of the reporting requirements of the pump operator.		
Taking water samples	The authority that is responsible for water supply.	Trained in taking water samples, driving license.	Transport, sample bottles, cooler box.	Sampling routine defined by sampling plan.		
Sending water samples for testing.	The authority that is responsible for water supply.	Keeping records.	Transport to laboratory	Sent to nearest accredited laboratory.		
Defining the monitoring requirements of an individual borehole.	Technical manager of operations or hydrogeologist.	Hydrogeological degree or diploma, experience of	Reports and records on borehole, monitoring data.			

Table 3.2.1.1: Key groundw	Table 3.2.1.1: Key groundwater management functions					
Activity	Responsible Person	Skills and qualifications required	Resources, tools and equipment	Remarks		
		hydrogeological conditions.				
Ensuring that boreholes are equipped with piezometer tubes for measuring water levels and water meters for measuring abstraction.	The authority that is responsible for water supply.	Project management	In house technical staff, suppliers, contractors, specifications.			
Ensuring that operators have the equipment and skills to do monitoring.	The authority that is responsible for water supply.	Project management	Trainers, suppliers, specifications.			
Monitoring the pump operator's competence to collect and record data.	Pump operator supervisor	Staff supervision, knowledge of pump operators' tasks.	Transport	Done as part of the supervision of O&M activities.		
Processing data collected at the local level	Data clerk	Data capture, record keeping, filing, trained in operating software.	Computer, spreadsheet or groundwater management software, files.	Maintains an electronic and physical record of data.		
Studying water level, water quality and abstraction data on a regular basis.	Technical manager of operations.	Technical training, operations experience.	Project files, monitoring data	Done as part of the management of O&M		
Revising pumping recommendations, and adjusting the monitoring requirements. Ensuring the recommendations are carried out and monitoring the implementation of the recommendations.	Technical manager with hydrogeologist as required.	Technical training, operations experience.	Reports and records on borehole, monitoring data, operational information.	Ongoing management of operations and groundwater resources.		
Reporting to council and pump operator, providing summary data to the CMA.	Data clerk with supervision from technical manager.	Training in operating software.	Computer, spreadsheet or groundwater management software, printer.	Summary data defined by license (frequency, what data, form of data)		

Detail information regarding the groundwater sources is available under Sections 3 of the Administration, Information and Comprehensive Overview Report. The recommended daily, weekly, monthly and six monthly O&M activities, as included under Section 4.1.1, are to be implemented by Bitou Municipality for their boreholes.

3.2.2 Surface water infrastructure (Abstraction Points)

Section 6.1 of Topic 6 gives an overview of the years in which the annual water requirement is likely to exceed the total registration volumes or yields from the various resources.

Table 3.2.2.1: Current raw water storage capacity available, the current water requirements of the towns and number of days for which storage is available.								
Scheme Raw water storage capacity available (MI) Water usage for the last three years (AADD, MI/d) Number of days for which capacity is available if					•			
	capacity available (IVII)	16/17	17/18	18/19	16/17	17/18	18/19	
Plettenberg Bay	2 060 x 55% = 1 133	8.448	9.781	10.300	134	116	110	
Kurland	-	0.471	0.517	0.537	-	-	-	
Natures Valley	-	0.132	0.155	0.209	-	-	-	

The preventative maintenance activities, as included under Section 4.1.2, are to be implemented by Bitou Municipality for their surface water infrastructure.

3.2.3 Bulk water pipeline infrastructure

Based on the most likely land-use development scenario, it will be necessary to upgrade the following bulk water pipelines:

Scheme	Recommended bulk water pipelines Feeder mains that require upgrading
	Feeder mains that require upgrading
Plettenberg Bay	 It is proposed that the Archiewood and Brackenridge reservoirs are supplied in future with water only through the existing 200/250 mm Ø pipeline that currently supplies the Town Tower reservoir. It is proposed that the 200 mm Ø section of this pipeline between the Plettenberg Bay WTP and the Town Tower reservoir is increased to a 315 mm Ø pipeline (Item BPW.B1). Upgrading of the 100 mm Ø feeder main between the Town Tower reservoir and the Town Lower & Upper towers (Item BPW.B24). The existing 200 mm Ø section of the so-called "Kwanokuthula" rising main (between the New Horizon reservoirs and the Kwanokuthula East (Lower) reservoirs bould be reinforced with a new 315 mm Ø pipeline (Item BPW.B27). Upgrading of the feeder main to the Kwanokuthula West (Upper) tower(s) when the proposed second 500 KI tower is constructed (part of item BPW.B33). Upgrading of the feeder main to the Kwanokuthula East (Lower) pump station (Item BPW.B27). Upgrading of the 20 mm Ø buik pipe from the WTP b2 to the Town reservoir A (Item BPW.B27). Upgrading of the 20 mm Ø buik pipe from the WTP b2 to the Town reservoir. This bulk system comprises of 4 discreet sections, i.e. section 1 (150 & 315 mm Ø pipeline sfrom the NTP. Upgrading of the D0 mm Ø becker Golf Estate to the draw-oft to Wittedrift & Green Valley at the Rivel Kaod to before the birdge over the Keurbooms River and 9 pipeline (Item BPW.B27). Upgrading of the 101 mØ Oreker Golf Estate to the draw-oft to Wittedrift & Green Valley at the Rivel Ravid Scient 3 (150 mm Ø pipeline and Town reservoirs A & C to the Matijesfontein reservoir a) (150 mm Ø pipeline (Item BPW.B39), section 3 (150 mm Ø pipeline in emds), section 2 (150 mm Ø pipeline in Com reservoirs A & C to the Matijesfontein reservoir (160 MS a) (170 mm Ø pipeline from opposite the Dirdge over the Keurbooms River and 9 pipeline (Item BPW.B47). The foid '300 mm Ø A C depip sing mains from the Piettenberg Ba
Kurland	 New 200 mm Ø feeder main from the Matjiesfontein reservoir to the proposed Matjiesfontein Upper reservoir (item BKW.B3.1). New 160 mm Ø feeder main from the Matjiesfontein Upper reservoir to the existing Kurland bulk system (item BKW.B3.2). A 3.0 km 160 mm Ø section of the bulk system between Kurland and Plettenberg Bay has already been

Table 3.2.3.1: Fut	Table 3.2.3.1: Future bulk water pipelines required				
Scheme	Scheme Recommended bulk water pipelines				
	to this pipeline (on the southern side) and that the northern side of this pipeline is connected to the existing 200 mm Ø supply pipeline from the Kurland reservoirs to the Kurland reticulation network. The existing 200 mm Ø pipe (that is currently part of the reticulation network) should then be transferred to the bulk system (after item BKW1.3 is implemented).				
Natures Valley	No feeder mains require upgrading in the future.				

Table 3.2.3.2: Cost of future bulk water supply pipelines required						
Scheme	New feeder mains that are proposed or existing feeder mains that require upgrading in the future (Master Plan Item)	Project	Year	Diameter (mm)	Length (m)	Estimate d Cost (VAT Excl.)
	35 I/s FCV to install (BPW.B2)	PRJ-BPW-002	2021	150	-	R233 000
	Dedicated bulk supply pipeline to Kwanokuthula Upper Reservoir (BPW.B59)	PRJ-BPW-002	2021	315	3	R62 000
	Pipeline when FDA P100 develops (BPW.B73)	PRJ-BPW-006	2021	160	766	R1 072 000
	Inter-connection pipe to improve bulk water supply to Keurboomstrand (BPW.B40)	PRJ-BPW-007	2021	160	31	R76 000
	Pipeline when existing bulk supply to Keurboomstrand reservoir nears capacity (BPW.B48.2)	PRJ-BPW-057	2023	200	10	R60 000
	Pipeline to reinstate New Horizon PS when FDA P35 develops (BPW10.2)	PRJ-BPW-008	2023	280	6	R72 000
	Pipeline when future New Horizon PS is constructed (BPW10.3)	PRJ-BPW-008	2023	280	26	R131 000
	Pipeline when New Horizons Tower is constructed (BPW10.5)	PRJ-BPW-008	2023	280	23	R120 000
	Pipeline when FDA P35 develops (BPW10.6)	PRJ-BPW-008	2023	250	44	R157 000
	Pipeline to rezone high lying areas of New Horizon reservoir to New Horizon Tower (BPW10.7)	PRJ-BPW-008	2023	200	13	R65 000
	Valve to insert and close to rezone high lying areas of New Horizon reservoir to New Horizon Tower (BPW10.8a)	PRJ-BPW-008	2023	200	-	R117 000
	Valve to insert and close to rezone high lying areas of New Horizon reservoir to New Horizon Tower (BPW10.8b)	PRJ-BPW-008	2023	160	-	R110 000
	Valve to insert and close to rezone high lying areas of New Horizon reservoir to New Horizon Tower (BPW10.9a)	PRJ-BPW-008	2023	160	-	R117 000
	Valve to insert and close to rezone high lying areas of New Horizon reservoir to New Horizon Tower (BPW10.9b)	PRJ-BPW-008	2023	200	-	R117 000
	Valve to insert and close to rezone high lying areas of New Horizon reservoir to New Horizon Tower (BPW10.10)	PRJ-BPW-008	2023	110	17	R42 000
Plettenberg	Pipeline to augment bulk water supply to Keurboomstrand (BPW.B39.1)	PRJ-BPW-009	2025	355	925	R3 725 000
Bay	Pipeline to augment bulk water supply to Keurboomstrand (BPW.B39.2)	PRJ-BPW-009	2025	160	30	R75 000
	Pipeline to reduce demand on Kwanokuthula system (BPW.B21.1)	PRJ-BPW-011	2025	23	280	R128 000
	Valve to insert and close to reduce demand on Kwanokuthula system (BPW.B21.2)	PRJ-BPW-011	2025	250	-	R138 000
	8 l/s FCV to install to reduce demand on Kwanokuthula system (BPW.B22)	PRJ-BPW-011	2025	80	-	R175 000
	New dedicated supply to Roodefonteon Upper reservoir (BPW.B5)	PRJ-BPW-013	2025	315	2 207	R7 095 000
	Inter-connection pipeline to utilise old 150 mm pipeline as supply to Kranshoek reservoir (BPW.B33)	PRJ-BPW-013	2025	160	14	R53 000
	New bulk pipeline when bulk supply to Wittedrift & Green Valley reaches capacity (BPW.B71)	PRJ-BPW-014	2025	200	5 261	R9 264 000
	New bulk pipeline when supply problems to towers are experienced (BPW.B24)	PRJ-BPW-024	2025	160	10	R47 000
	Valve to insert and close (Emergency connection between towers) (BPW.B19)	PRJ-BPW-026	2025	315	-	R156 000
	Bulk supply line to connect borehole to existing borehole network (BPW.B12.1)	PRJ-BPW-046	2025	110	849	R865 000
	Bulk pipeline to augment bulk water supply to Kwanokuthula (including N2-crossing) (BPW.B27.1)	PRJ-BPW-048	2025	315	1 079	R3 184 000
	Bulk pipeline to augment bulk water supply to Kwanokuthula (including N2-crossing) (BPW.B27.2)	PRJ-BPW-048	2025	400	52	R337 000
	Pipeline when existing bulk supply to Matjiesfontein reservoir nears capacity (BPW.B67)	PRJ-BPW-015	2030	355	2 670	R10 612 000
	Pipeline to reinforce bulk supply from desalination plant to the existing bulk system (BPW.B37)	PRJ-BPW-047	2030	315	732	R2 388 000

Scheme	New feeder mains that are proposed or existing feeder mains that require upgrading in the future (Master Plan Item)	Project	Year	Diameter (mm)	Length (m)	Estimat d Cost (VAT Excl.)
	New feeder main for Kwanokuthula West pump station (BPW.B29)	PRJ-BPW-019	2035	400	30	R252 0
	Connection pipeline to Kwanokuthula Upper bulk pipeline when item BPW.B31 is implemented (BPW.B64)	PRJ-BPW-019	2035	315	62	R251 0
	Connection pipeline to Kwanokuthula Upper bulk pipeline when item BPW.B31 is implemented (BPW.B66a)	PRJ-BPW-019	2035	315	10	R86 0
	Valve to insert and close when connection pipeline to Kwanokuthula Upper bulk pipeline is established (BPW.B66b)	PRJ-BPW-019	2035	315	-	R156 0
-	New dedicated supply pipeline to new Keurboomstrand Upper Reservoir (BPW.B50)	PRJ-BPW-034	2035	110	943	R958 0
	New pipeline when FDAs P83 – P87 are developed (BPW.B97a)	PRJ-BPW-042	2035	160	2 133	R2 596 0
	Alternative supply pipeline to Keurboomstrand from the proposed Matjiesfontein Upper reservoir (BPW.B97b)	PRJ-BPW-042	2035	110	478	R498 0
	PRV to install to reduce high static pressures when FDAs P84 to P87 develop (BPW.B98)	PRJ-BPW-042	2035	80	-	R175 0
	6 l/s FCV to install to sustain pressure in upstream bulk system (BPW.B99)	PRJ-BPW-042	2035	80	-	R175 0
	Construct raw bulk line to Bitou WTP (BPW.B11)	PRJ-BPW-051	2035	200	4 927	R8 679 0
	Connect boreholes to raw water reservoir (BPW.B12.2)	PRJ-BPW-051	2035	250	103	R294 0
	New pipeline when existing bulk supply to Matjiesfontein reservoir nears capacity (BPW.B47)	PRJ-BPW-022	2040	315	2 792	R8 961 0
	New pipeline when supply problems to Brakkloof Reservoir occur (BPW.B17.1)	PRJ-BPW-025	2040	400	3 881	R15 389 0
	New pipeline when supply problems to Brakkloof Reservoir occur (BPW.B17.2)	PRJ-BPW-025	2040	450	1 328	R5 316 0
	20 I/s FCV to install to sustain pressure in network when Roodefontein Golf Estate sump is constructed (BPW1.18)	PRJ-BPW-056	2040	100	-	R205 0
	Upgrade existing bulk pipeline to meet ultimate demand (When FDA P059 develops) (BPW.B1)	PRJ-BPW-054	2045	315	814	R2 650 0
	33 I/s FCV to install when FDA P59 develops (BPW13.4)	PRJ-BPW-055	2045	150	-	R233 0
	Pipeline when FDA P70 develops (BPW.B45)	PRJ-BPW-041	2050	200	2 083	R3 693 0
	32 I//sFCV to install when FDA P70 develops (BPW.B92)	PRJ-BPW-041	2050	100	-	R205 0
	Pipeline when pumps are upgraded from 50 L/s to 100 L/s (BPW.B77)	PRJ-BPW-052	2050	315	105	R387 0
	Sub Total					R91 952 0
	New pipeline when WTW nears capacity (BKW.B4)	PRJ-BKW-004	2025	200	3 080	R8 332 0
	New pipeline when WTW nears capacity (BKW.B7)	PRJ-BKW-005	2030	160	5 977	R12 535 0
	Pipeline to utilise existing gravity feed as part of the bulk system (BKW.B8.1)	PRJ-BKW-005	2030	160	352	R771 0
Kurland	Valve to close / Pipe to disconnect	PRJ-BKW-005	2030	200	-	
	Valve to close / Pipe to disconnect	PRJ-BKW-005	2030	200	(m) 30 62 10 - 943 2 133 478 2 133 478 - 103 2 792 3 881 1 328 - 814 - 814 - 2 083 - 105 3 080 5 977 352	
	Pipeline to utilise existing gravity feed as part of the bulk system (BKW.B8.4)	PRJ-BKW-005	2030	160	12	R59 0
	Sub Total				(m) 30 62 10 - 943 2133 478 - 478 - 4927 103 2792 3881 1328 - 814 - 2083 - 105 3080 5977 352 - 12	R21 697 0
atures	-	-	-	-	-	
alley	Sub Total					

The recommended maintenance activities for the bulk water pipelines, as included under Section 4.1.3, to be implemented by Bitou Municipality.

3.2.4 Water Treatment Works infrastructure

Table 3.2.4.1: Exi	sting capacitie	es and flows at e	each of the WTWs (MI/d)		
wtw	Existing Hydraulic Capacity	Peak Month Average Daily Flow	Average Daily Flow 2018/2019	Required Treatment Capacity (1.5 x AADD _{10yr})	2018/2019 Water Quality Failures (SANS0214:2015)
Plettenberg Bay	27.000	10.997 (Dec)	9.624	18.658	-
Desalination	2.000	1.971 (Jan)	1.634 *	2.000	-
Kurland	0.600	0.573 (Nov)	0.537	0.935	-
Natures Valley	1.000	0.430 (Dec)	0.209	0.364	-

The table below gives a summary of the existing capacities and current flows at each of the WTWs (MI/d).

Note: * Calculated over period December 2018 to April 2019.

It can be noted from the above table that the existing hydraulic capacities of all the WTWs are adequate, except for the Kurland WTW. There were also no water quality failures during the last financial year and the current treatment processes and operational procedures at the WTWs are therefore adequate. Some of the equipment at the WTWs however require refurbishment as indicated in Table 3.2.4.3.

The WTWs to be upgraded in Bitou Municipality are summarised in the table below:

Table 3.2.4.2: WTWs to be upgraded in the future					
wtw	Short, Medium, Long Term	Estimated Cost (Vat Excluded)			
Upgrade capacity of Kurland WTW from 0.6 Ml/d to 1.2 Ml/d	Short	R9 317 000			

Key issues to be addressed at the WTWs, as identified during the WSDP inspection process, are as follows:

- Plettenberg Bay WTW:
 - Lime dosing equipment needs refurbishment at both inlets. Pump control panel not working effectively (Wiring and speed control). Only one of the two lime cones are working, valve of the one is broken and therefore not in use. Lime feeder for the final water is not working.
 - > Endress Hauser inline pH monitoring is not working.
 - > Only one of the two coagulant dosing pumps at the second inlet is working, no standby.
 - Chlorine dosing building: No light fittings in the one room. Scales are not working. Chlorine gas detector is not working, which urgently needs to be repaired. Some lose wires in the control panel in the chlorine building.
 - DAF unit: Only one of the pumps can be used, because one of the check valves was removed for repairs.
 - Five large sand filters: The automatic vales do not always open and sometimes need to be operated manually.
 - > Nine small sand filters: One of the filters is not working.
- Plettenberg Bay Desalination WTW: No items were identified.
- Kurland WTW: Capacity of plant is insufficient to meet future water treatment requirements. No other items were identified during the site inspection.
- Natures Valley WTW: Final water pump station at WTW needs refurbishment.

The table below gives an overview of the recommended improvements for the WTWs in Bitou Municipality's Management Area, as identified during the WSDP inspection.

Table 3.2.4.3: Recommended improvements for the WTWs as identified during the WSDP inspection.				
Scheme	Recommendations	Estimated Cost (Vat Excluded)		
	Refurbish lime dosing equipment at both inlets.	R250 000		
	Refurbish pH inline monitoring equipment.	R85 000		
Diattanhara Dav	Repair second coagulant dosing pump at the second inlet.	R25 000		
Plettenberg Bay	Refurbish chlorine dosing equipment (Leak gas detector, Scales, etc.)	R70 000		
	Replace check valve for pump at DAF unit.	R10 000		
	Refurbish filter units.	R80 000		
Desalination Plant	-	-		
Kurland	-	-		
Natures Valley	Refurbish final water PS at WTW.	R1 200 000		
Total		R1 720 000		

The recommended O&M activities for the WTWs, as included under Section 4.1.4, are to be implemented by Bitou Municipality.

3.2.5 Water pump stations

Key issues to be addressed at the water pump stations, as identified through the WSDP inspection process, are as follows:

- Most of the water pump stations are operated manually, because of problems with the SCADA system.
- Weekly maintenance inspections are required for all the water PSs (Items to be checked indicated under Section 4.1.5).
- Weekly and quarterly maintenance inspections are required of all the water PSs by an electrician (Items to be checked indicated under Section 4.1.5).
- New Horizon Small PS: Pump is in for repairs.
- Town Tower High and Low reservoir PS: Only two of the four pumps are working.
- Kwanokuthula PS No.1: Two of the motors were removed and the PS is currently not in use.
- Roodefontein raw water PS: PS is not secure, because the door was broken off.

Based on the most likely land-use development scenario, it will be necessary for the following water pump stations:

Plettenberg Bay pump stations that require upgrade:

- A back-up pump is proposed for the existing High Lift pump at the Plettenberg WTW PS in order to improve the redundancy of the supply to New Horizon and Kwanokuthula West (Upper) reservoirs (item BPW.B58).
- Upgrading of the Kwanokuthula East (Lower) PS in order to improve supply to the Kwanokuthula East (Lower) tower (item BPW.B18) and to the Kwanokuthula West (Upper) reservoir (item BPW.B31).
- Upgrading of the Kwanokuthula West (Upper) PS in order to augment supply to the Kwanokuthula West (Upper) tower when the proposed second 500 kl Upper tower is constructed (item BPW.B60).
- Upgrading of the pumps at the Plettenberg WTP that pumps to the Town Tower and Brackenridge reservoirs is proposed if supply problems are experienced when FDA P59 develops (item BPW.B32).
- Upgrading of the pumps at the Town Tower reservoir pumping to the Town Lower & Upper towers is proposed if supply problems are experience (item BPW.B23).
- Upgrading of the pumps at the WTP PS that pump towards the Town reservoir A (item BPW.B76).
- Upgrading of the Green Valley pump station (item BPW.B72).

- Upgrading of the pumps at the Plettenberg WTP that pumps to the Brakkloof reservoir (item BPW.B16).
- Upgrading of the pumps at the Brakkloof PS that pumps to the Quarry reservoir (item BPW.B9).
- Upgrading of the Kranshoek reservoir to Kranshoek towers pump station (this project is currently in progress).
- Upgrading of the pumps at the Bitou desalination plant bulk PS (item BPW.B36).

Plettenberg Bay new pump stations required:

- New booster pump station to Wittedrift (item BPW.B41a).
- Upgrading of the booster pumps to Wittedrift when required (BPW.B41b)
- New Green Valley booster pump station (item BPW.B75).
- A new booster pump station to augment bulk water supply to Matjiesfontein reservoir (item BPW.B100). This pump station should only be constructed after sections 2, 3 & 4 of the bulk system from the Town reservoirs to the Matjiesfontein reservoir is implemented.
- Decommission the existing booster pumps (inside the pipeline) towards the Keurboomstrand reservoir (item BPW.B48.3) and replace with a new pump station (item BPW.B48.1).
- New pump station at Keurboomstrand reservoir to proposed Keurboomstrand Upper reservoir (item BPW.B49).
- New Keurboomstrand Upper booster pump station (item BPW.B52).
- New pump station at proposed Roodefontein Lower reservoir to proposed Roodefontein Upper reservoir (item BPW.B4).
- New Goose Valley booster pump station (item BPW.B35).
- New pump station on the New Horizon reservoir site for the proposed New Horizon tower (item BPW10.1)

Plettenberg Bay new pump stations required: Private Developers

- New pump station to supply bulk water from the Archiewood reservoir zone to the proposed Ganse Valley Estate reservoir (item BPW13.5). This is seen as private infrastructure for the cost of the developer of FDA P59.
- New pump station to supply bulk water from the Town PRV 4 zone to the proposed Roodefontein Golf Estate reservoir (item BPW1.19). This is seen as private infrastructure for the cost of the developer of FDA P11.
- New pump station to supply bulk water to the proposed Hanglip Golf Estate reservoir (item BPW.B93). This is seen as private infrastructure for the cost of the developer of FDA P70.

Kurland new pump stations required:

- New pump station to supply bulk water from the Matjiesfontein reservoir to the proposed Matjiesfontein Upper reservoir (item BKW.B3).
- New pump station to supply bulk water from the Matjiesfontein Upper reservoir to the Kurland reservoirs (item BKW.B6).

Natures Valley new pump stations required: No future pump stations are required.

Scheme	Recommendations included in the Water Master Plan (Master Plan Item)	Project	Year	Capacity (I/s)	Head (m)	Estimated Cost (VAT Excl.)
	New PS to augment bulk water supply to Wittedrift & Green Valley (after item BPW.B40 is implemented)(BPW.B41a)	PRJ-BPW-006	2021	7	55	R2 023 000
	Upgrade Green Valley PS when FDA P100 develops (BPW.B72)	PRJ-BPW-006	2021	15	75	R1 886 000
	New Green Valley booster PS when FDA P100 develops (BPW.B75)	PRJ-BPW-012	2023	20	25	R1 879 000
	New PS when existing bulk supply to Keurboomstrand reservoir nears capacity (BPW.B48.1)	PRJ-BPW-057	2023	15	55	R1 851 000
	Decommission existing booster pumps (inside pipeline) when existing bulk supply to Keurboomstrand reservoir nears capacity (BPW.B48.3)	PRJ-BPW-057	2023	10	35	R216 000
-	New PS when FDA P35 develops (BPW10.1)	PRJ-BPW-008	2023	80	25	R2 822 000
	New PS at proposed Roodefontein lower reservoir to proposed Roodefontein Upper reservoir (when Roodefontein Upper reservoir is constructed) (BPW.B4)	PRJ-BPW-013	2025	90	60	R3 342 000
	Upgrade PS at the Town Tower reservoir pumping to Town Lower and Upper Towers (Ultimate requirement 16 l/s, upgrade if required) (BPW.B23)	PRJ-BPW-024	2025	16	20	R239 000
	Upgrade Kwanokuthula East (Lower) PS (Reduce pumping requirements to higher tower) (BPW.B18)	PRJ-BPW-026	2025	60	15	R580 000
	Upgrade Kwanokuthula West (Upper) PS when supply to Upper tower reaches capacity (BPW.B60)	PRJ-BPW-018	2030	175	16.5	R922 000
	Upgrade existing Brakkloof PS when existing bulk supply to Quarry reservoir nears capacity (BPW.B9)	PRJ-BPW-037	2030	25	35	R575 000
	Upgrade existing PS at Desalination Plant (Upgrade pump capacity to 7 Ml/d) (BPW.B36)	PRJ-BPW-047	2030	85	130	R2 296 000
	Upgrade existing Kwanokuthula East (Lower) PS when supply problems to Upper reservoir occur (BPW.B31)	PRJ-BPW-019	2035	85	30	R865 000
Plettenberg Bay	Install backup pump for Highlift PS at Plettenberg Bay WTW for supply to New Horison and Kwanokuthula (BPW.B58)	PRJ-BPW-019	2035	100	122	R1 658 000
	New PS at Keurboomstrand reservoir when new Keurboomstrand Upper reservoir is constructed (BPW.B49)	PRJ-BPW-034	2035	10	90	R1 795 000
-	Upgrade PS at Plettenberg Bay WTW that pump to Brakkloof reservoir when supply problems to Brakkloof reservoir occur (BPW.B16)	PRJ-BPW-025	2040	165	50	R1 826 000
	New Goose Valley booster PS when higher lying erven of FDA P60 develops (BPW.B35)	PRJ-BPW-033	2040	17	45	R1 861 000
	New Keurboomstrand Upper booster PS when FDAs P83 & P84 develop (BPW.B52)	PRJ-BPW-034	2040	15	30	R1 808 000
	25m ³ @ 33m TWL Pump Sump when FDA P11 develops (Cost to developer)	PRJ-BPW-056	2040	-	-	-
	25m ³ @ 34m TWL Pump Sump to install when FDA P59 develops. New sump for Ganse Valley Estate (BPW13.5)	PRJ-BPW-055	2045	-	-	-
-	Upgrade pump to augment bulk water supply to Wittedrift & Green Valley (After item BPW.B71 is implemented) (BPW.B41b)	PRJ-BPW-049	2045	20	25	R340 000
	Upgrade PS at Plettenberg Bay WTW that pump to the Town Tower and Brackenridge reservoirs (Ultimate requirement 95 l/s, upgrade if required) (BPW.B32)	PRJ-BPW-054	2045	95	65	R740 000
	New PS when existing bulk supply to Matjiesfontein reservoir nears capacity (BPW.B100)	PRJ-BPW-050	2050	95	25	R3 068 000
-	Upgrade pumps at Plettenberg Bay WTW that pump to Reservoir A when supply problems to Town reservoirs are experienced (BPW.B76)	PRJ-BPW-052	2050	100	10	R797 000
F	25m ³ @ 6m TWL Pump Sump for Hangklip Estate (Cost to developer) (BPW.B93)	PRJ-BPW-050	2050	-	-	-
	Sub Total					R33 389 000
	New PS when existing bulk supply to Kurland WTP nears capacity (BKW.B3)	PRJ-BKW-004	2025	30	200	R2 630 000
Kurland	New PS when existing bulk supply to Kurland WTP nears capacity (BKW.B6)	PRJ-BKW-004	2030	20	200	R2 278 000
	Sub Total					R4 908 000
Natures Valley	-	-	-	-	-	-
	Sub Total					-

2020-06-30/Bitou Municipality/WSDP for Client

The recommended O&M activities for the water pump stations, as included under Section 4.1.5, are to be implemented by Bitou Municipality.

3.2.6 Reservoir infrastructure

Key issues to be addressed at the reservoirs, as identified during the WSDP inspection process, are as follows:

- The levels of most of the reservoirs are controlled through visual inspections, because of problems with the SCADA system. This result in additional operational costs and increase the workload of the operational personnel.
- The reservoir covers are not locked and adequately secured at most of the reservoirs.
- A large number of the reservoir valve chambers are without covers or the existing covers are broken. Some of the chambers are also under water and the chambers are not adequately maintained.
- There is a lack of maintenance done on the reservoir valves.
- The Kwanokuthula old tower is not in use, because it is leaking.
- The following reservoir sites are not yet adequately fenced and secured.
 - > New Horizon reservoirs.
 - > Goose Valley reservoir (Fence was stolen).
 - > Wittedrift reservoir (Fence was vandalised).
 - > Natures Valley reservoir.

The condition of most of the reservoirs in Bitou Municipality's Management Area is good. New security fences were also recently installed at some of the reservoirs to reduce possible vandalism. Bitou Municipality's overall storage factors of the reservoirs for the various systems for 2018/2019, based on 1 x PDD (24 hours storage capacity), are 3.18 for Plettenberg Bay, 2.60 for Kurland and 0.67 for Natures Valley. The Water Master Plan indicates the total reservoir storage capacity for Plettenberg Bay as 128 h x AADD, for Kurland as 156 h x AADD and for Nature's Valley as 84 h x AADD.

Even though the town's overall storage capacity might be adequate there might be some distribution zones within the town's network with inadequate storage capacity, as identified through the Water Master Planning process (2020) and indicated below.

Plettenberg Bay reservoirs required:

- Additional reservoir storage capacity of 3.500 MI and additional capacity at the Upper tower of 0.500 MI are proposed at the existing Kwanokuthula West (Upper) reservoir site to accommodate future developments (items BPW.B62 & BPW.B63). The reservoir and tower will be required when the water demand for the Kwanokuthula West (Upper) tower zone exceeds 2 000 KI/d.
- It is proposed that a new 500 kl tower with a proposed TWL of 210 m a.s.l. (item BPW.10.4) is constructed in order to accommodate FDAs P35 & P91. This new tower will also be required to provide sufficient pressure to the higher lying erven in New Horizon.
- Additional reservoir storage capacity of 3.500 MI is proposed at the existing Kwanokuthula East (Lower) reservoir site to accommodate future developments (item BPW.B28). The reservoir will be required when the water demand for the Kwanokuthula East (Lower) reservoir and tower zones exceeds 1 500 KI/d.
- It is proposed that the existing Green Valley reservoirs and elevated tank are replaced with a new higher lying 1.250 MI reservoir (item BPW.B74, TWL of 138 m a.s.l.). The existing reservoirs and elevated tank can be decommissioned.
- When additional storage capacity is required for the Matjiesfontein reservoir zone, a new 2.000 MI reservoir should be constructed at the existing Matjiesfontein reservoir site (item BPW.B53).

- A new 0.600 MI Keurboomstrand Upper reservoir (item BPW.B51) with a TWL of 160 m a.s.l. is proposed for the future Keurboomstrand Upper reservoir zone and the Keurboomstrand Upper booster zone.
- A new 3.500 MI Roodefontein Lower reservoir with a TWL of 175 m a.s.l. is proposed for the future Roodefontein Lower zone (item BPW.B3).
- A new 7.000 MI Roodefontein Upper reservoir with a TWL of 215 m a.s.l. is proposed for the future Roodefontein Upper zone (item BPW.B6). Construction of this reservoir can be phased.
- A new 1.000 MI raw water reservoir (item BPW.B10) is proposed on the Kwanokuthula East reservoir site to collect raw water from the Kwanokuthula well field. The safe yield of the boreholes is ± 3.5 MI/d (balancing volume of the reservoir is ± 7 hours x the safe yield of the boreholes). A more detailed study will however be required regarding the size (and requirement) of the raw water storage reservoir and if the quality of the raw water is such that it can be blend with the potable water from the Kwanokuthula East reservoir.

Plettenberg Bay reservoirs required: Private Developers

- A new 2.800 MI reservoir (item BPW13.6) with a TWL of 140 m a.s.l. is proposed for the proposed Ganse Valley Golf Estate (future area P59). This reservoir should be filled through a pump station and accompanying rising main from a sump with a controlled inflow in order to sustain the pressure in the upstream reticulation network. This is seen as private infrastructure for the cost of the developer of future area P59.
- A new 1.600 MI reservoir (item BPW1.23) with a TWL of 135 m a.s.l. is proposed for the proposed Roodefontein Golf Estate (FDA P11). This reservoir should be filled from a sump with a controlled inflow in order to sustain the pressure in the upstream reticulation network. This is seen as private infrastructure for the cost of the developer of FDA P11.
- A new 2.800 MI reservoir (item BPW.B94) with a TWL of 185 m a.s.l. is proposed for the proposed Hanglip Golf Estate (future area P70). This reservoir should be filled through a pump station and accompanying rising main from a sump with a controlled inflow in order to sustain the pressure in the upstream bulk supply system. This is seen as private infrastructure for the cost of the developer of future area P70.

Kurland reservoir required:

- A new 1.500 MI reservoir (item BKW.B9) is proposed at the existing Kurland reservoir site in order to augment reservoir storage capacity. This reservoir will be required when the AADD for Kurland exceeds 750 kl/d.
- A new 0.600 MI balancing reservoir is however proposed on the bulk system from the Matjiesfontein reservoir to Kurland, i.e. the proposed Matjiesfontein Upper reservoir with a TWL of 217 m a.s.l. (item BKW.B5).

Natures Valley reservoir required:

• A new 1.000 MI reservoir is proposed at the existing Nature's Valley reservoir site to replace the existing 0.600 MI reservoir (item BNW.B1).

Based on the most likely land-use development scenario, it will be necessary for the construction of the following new reservoirs.

Table 3.2.6.1:	Future reservoir storage capacities required				
Scheme	Recommendations included in the Water Master Plan (Master Plan Item)	Project	Year	Capacity (MI)	Estimated Cost (VAT Excl.)
	New reservoir for Roodefontein Lower zone (BPW.B3)	PRJ-BPW-001	2021	3.500	R11 920 000
	New reservoir storage capacity for Green Valley when FDA P100 develops (BPW.B74)	PRJ-BPW-006	2021	1.250	R5 921 000
	Construct water tower when FDA P35 develops (BPW10.4)	PRJ-BPW-008	2023	0.500	R7 980 000
	New reservoir for Roodefontein Upper zone (can be phased) (BPW.B6)	PRJ-BPW-013	2025	7.000	R19 502 000
	New Kwanokuthula West reservoir when existing reservoir storage volume nears capacity (BPW.B62)	PRJ-BPW-018	2030	3.500	R11 920 000
	New Kwanokuthula West water tower when existing tower storage volume nears capacity (BPW.B63)	PRJ-BPW-018	2030	0.500	R7 980 000
volume nears capacity (BPW.B63) Plettenberg Bay	New reservoir required for Kwanokuthula East when existing storage nears capacity (BPW.B28)	PRJ-BPW-017	2035	3.500	R11 920 000
	New Keurboomstrand Upper reservoir when FDA P83 - P87 develop (BPW.B51)	PRJ-BPW-034	2035	0.600	R3 654 000
	Construct Kwanokuthula East raw water reservoir (BPW.B10)	PRJ-BPW-051	2035	1.000	R5 040 000
	New reservoir when FDA P11 develops (Cost to developer) (BPW1.23)	PRJ-BPW-056	2040	1.600	-
	New Matjiesfontein reservoir required when existing storage nears capacity (BPW.B53)	PRJ-BPW-023	2045	2.000	R8 008 000
	New reservoir for Ganse Valley Estate (Cost to developer) (BPW13.6)	PRJ-BPW-055	2045	2.800	-
	New reservoir for Hangklip Estate (Cost to developer) (BPW.B94)	PRJ-BPW-041	2050	2.800	-
	Sub Total				R93 845 000
	New reservoir when existing storage capacity nears capacity (BKW.B9)	PRJ-BKW-006	2025	1.500	R6 650 000
Kurland	New reservoir when Kurland WTP nears capacity (Reservoir to serve dual purpose, see PRJ-BPW-042) (BKW.B5)	PRJ-BKW-004	2025	(MI) 3.500 1.250 0.500 7.000 3.500 0.500 3.500 0.600 1.000 1.600 2.000 2.800 2.800	R3 654 000
	Sub Total				R10 304 000
	Replace existing reservoir (PNW.B1)	PRJ-BNW-002	2022	(MI) 3.500 1.250 0.500 7.000 3.500 0.500 3.500 0.500 3.500 0.500 3.500 0.500 3.500 0.600 1.000 1.600 2.000 2.800 2.800 0.600	R5 040 000
Natures Valley	Sub Total				R5 040 000
Total					R109 189 000

The recommended O&M activities for the reservoirs, as included under Section 4.1.6, are to be implemented by Bitou Municipality.

3.2.7 Water reticulation infrastructure

Based on the most likely land-use development scenario, it will be necessary for the following water reticulation infrastructure.

Table 3.2.7.1	Table 3.2.7.1: Future water reticulation infrastructure required							
Scheme	Recommendations included in the Water Master Plan	Master Plan Items	Project	Year	Estimated Cost (VAT Excl.)			
	Green Valley bulk supply upgrades - Phase 1	BPW21.1, BPW21.2, BPW21.3 & BPW21.4	PRJ-BPW-006	2021	R1 415 000			
	Plettenberg Bay network upgrades - Priority	BPW1.22, BPW3.1, BPW3.2, BPW3.3, BPW3.4, BPW6.3, BPW19.1, BPW19.2	PRJ-BPW-007	2021	R1 127 000			
Plettenberg Bay	Development related infrastructure: Wittedrift (Priority)	BPW15.1, BPW15.1	PRJ-BPW-040	2021	R872 000			
Вау	Development related infrastructure: Kwanokuthula (Short term)	BPW8.8, BPW8.9, BPW8.13, BPW8.14, BPW8.15, BPW9.1, BPW9.7	PRJ-BPW-010	2022	R7 806 000			
	Roodefontein Upper reservoir and bulk supply infrastructure	BPW5.1, BPW5.2, BPW5.6a, BPW5.6b, BPW5.6c, BPW5.6d, BPW5.6e, BPW5.7	PRJ-BPW-013	2025	R11 764 000			

Scheme	Recommendations included in the Water Master Plan	Master Plan Items	Project	Year	Estimated Cost (VAT Excl.)
	Development related infrastructure: Goose Valley reservoir zone	BPW14.1	PRJ-BPW-033	2025	R725 00
	Kwanokuthula Upper storage capacity augmentation	BPW8.1	PRJ-BPW-018	2030	R2 264 00
	Development related infrastructure: Archiewood & Brackenridge reservoirs	BPW13.1, BPW13.2	PRJ-BPW-031	2030	R1 728 0
	Development related infrastructure: Kwanokuthula (Longer term)	BPW11.10	PRJ-BPW-035	2030	R975 0
	Development related infrastructure: Roodefontein reservoirs	BPW4.1, BPW5.8, BPW5.10	PRJ-BPW-038	2030	R12 550 0
	Development related infrastructure: Town PRV 4 zone	BPW1.10, BPW1.12, BPW1.14, BPW1.15, BPW1.16, BPW1.20, BPW1.21	PRJ-BPW-039	2030	R6 050 0
	Development related infrastructure: Kwanokuthula (Medium term)	BPW8.16, BPW9.2, BPW9.3	PRJ-BPW-020	2035	R2 505 0
	Plettenberg Bay network upgrades - Longer term	BPW1.13, BPW3.5, BPW3.6	PRJ-BPW-021	2035	R2 644 0
	Development related infrastructure: Goose Valley reservoir zone	BPW14.4	PRJ-BPW-033	2035	R1 332 0
	Development related infrastructure: Kwanokuthula (Longer term)	BPW9.4, BPW9.5, BPW9.6	PRJ-BPW-035	2035	R6 583 0
	Development related infrastructure: Matjiesfontein reservoir zone	BPW16.1	PRJ-BPW-036	2035	R3 244 0
	Development related infrastructure: Quarry reservoir zone	BPW6.1	PRJ-BPW-037	2035	R379 0
	Development related infrastructure: Roodefontein reservoirs	BPW4.4, BPW5.11, BPW5.9	PRJ-BPW-038	2035	R10 080 0
	Development related infrastructure: Wittedrift (Longer term)	BPW15.3	PRJ-BPW-053	2035	R379 0
	Development related infrastructure: Archiewood & Brackenridge reservoirs	BPW7.1, BPW7.2, BPW13.3	PRJ-BPW-031	2040	R2 789 0
	Development related infrastructure: Brakkloof reservoir zone	BPW2.2, BPW2.3	PRJ-BPW-032	2040	R613 0
	Development related infrastructure: Goose Valley reservoir zone	BPW14.2	PRJ-BPW-033	2040	R403 0
	Development related infrastructure: Matjiesfontein reservoir zone	BPW16.2	PRJ-BPW-036	2040	R964 0
	Development related infrastructure: Quarry reservoir zone	BPW6.2	PRJ-BPW-037	2040	R926 0
	Development related infrastructure: Roodefontein reservoirs	BPW4.2a, BPW4.2b, BPW4.2c, BPW4.3, BPW4.5, BPW4.6	PRJ-BPW-038	2040	R4 318 0
	Development related infrastructure: Roodefontein Golf Estate	BPW1.17	PRJ-BPW-056	2040	R1 723 0
	Development related infrastructure: Keurboomstrand	BPW17.1	PRJ-BPW-034	2045	R279 0
	Development related infrastructure: Kwanokuthula (Longer term)	BPW8.17	PRJ-BPW-035	2045	R1 198 0
	Development related infrastructure: Matjiesfontein reservoir zone	BPW16.3	PRJ-BPW-036	2045	R302 0
	Development related infrastructure: Goose Valley reservoir zone	BPW14.3	PRJ-BPW-033	2050	R634 0
	Sub Total				R88 571 0
	Kurland network upgrade	BKW1.1, BKW1.2 & BKW1.3	PRJ-BKW-001	2021	R9 044 0
urland	Development related infrastructure: Kurland	BKW2.1	PRJ-BKW-003	2023	R1 405 0
	Sub Total				R10 449 0
atures	Natures Valley network upgrades	BNW1.1, BNW1.2	PRJ-BNW-001	2023	R706 0
alley	Sub Total				R706 0
arkerville	Establish Harkerville & Forest View hydraulic water models	BHW.1.1	PRJ-BHW-001	2021	R100 0
	Sub Total				R100 0

The Water Master Plan indicated the following Water Demand Management infrastructure requirements.

Table 3.2.7.2: F	uture water demand management	infrastructure required			
Scheme	Recommendations included in the Water Master Plan	Master Plan Items	Project	Year	Estimated Cost (VAT Excl.)
	Town PRV 4 zone: Alteration of zone boundaries & improvement of network conveyance & redundancy	BPW1.1, BPW1.4, BPW1.5, BPW1.24 & BPW1.25	PRJ-BPW-003	2021	R367 000
Plettenberg Bay	Brakkloof reservoir zone: Alteration of zone boundaries	BPW2.1, BPW2.4, BPW2.5, BPW2.6a, BPW2.6b, BPW2.7a, BPW2.7b, BPW2.8a, BPW2.8b, BPW2.8c, BPW2.8d, BPW2.8e, BPW2.8f & BPW2.9	PRJ-BPW-004	2021	R497 000
	Development related infrastructure: Archiewood & Brackenridge reservoirs	BPW20.1	PRJ-BPW-031	2045	R205 000
	Sub Total				R1 069 000
Kurland	-	-	-	-	-
Sub Total					-
	-	-	-	-	-
Natures Valley Sub Total					
Total					R1 069 000

The recommended maintenance activities for the water reticulation networks and fittings, as included under Section 4.1.3, are to be implemented by Bitou Municipality.

3.2.8 Bulk sewer pipeline and sewer drainage network infrastructure

The 2018/2019 Annual Report indicated that the Municipality experienced a high number of sewer blockages. The actions of the Municipality to address these blockages include the following:

- Daily monitoring of "hotspots" for blockages is underway;
- Community awareness programmes; and
- Consideration of use of screens in sewer systems is being researched.

Based on the most likely land-use development scenario, it will be necessary for the following bulk sewer pipeline and sewer drainage network infrastructure.

Table 3.2.8.	Table 3.2.8.1: Future bulk sewer pipeline and sewer drainage network infrastructure required							
Scheme	Recommendations included in the Water Master Plan Project Items				Estimated Cost (VAT Excl.)			
	1 108m x 200mm dia. upgrade existing gravity when overflow problems occur (Investigate first)	BPS5.1	PRJ-BPS-013	2021	R3 671 000			
	213m x 250mm dia. upgrade existing gravity when overflow problems occur (Investigate first)	BPS5.2	PRJ-BPS-013	2021	R887 000			
	436m x 160mm dia. new gravity when FDAs P31d, P31e, P32 and P33 develop	BPS25.1	PRJ-BPS-010	2021	R752 000			
	267m x 200mm dia. new gravity when FDAs P31c, P31d, P31e, P32, P33 and P34 develop	BPS25.2	PRJ-BPS-010	2021	R540 000			
	667m x 250mm dia. new gravity when FDAs P31c, P31d, P31e, P32, P33 and P34 develop	BPS25.3	PRJ-BPS-010	2021	R1 472 000			
Plettenberg	127m x 160mm dia. upgrade existing gravity when FDA P31b develops	BPS25.4	PRJ-BPS-010	2021	R471 000			
Bay gravity mains	510m x 250mm dia. upgrade existing gravity when overflow problems occur (Investigate first)	BPS25.5	PRJ-BPS-022	2021	R1 965 000			
	373m x 250mm dia. upgrade existing gravity when overflow problems occur (Investigate first)	BPS25.6	PRJ-BPS-022	2021	R1 468 000			
	223m x 250mm dia. upgrade existing gravity when overflow problems occur (Investigate first)	BPS25.7	PRJ-BPS-022	2021	R926 000			
	57m x 250mm dia. upgrade existing gravity when overflow problems occur (Investigate first)	BPS25.8	PRJ-BPS-022	2021	R323 000			
	50m x 315mm dia. upgrade existing gravity when FDAs P31b and P90 develop	BPS25.9	PRJ-BPS-010	2021	R337 000			
	3m x 400mm dia. upgrade existing gravity when overflow problems occur (Investigate first)	BPS25.10	PRJ-BPS-010	2021	R157 000			

Table 3.2.8.	le 3.2.8.1: Future bulk sewer pipeline and sewer drainage network infrastructure required					
Scheme	Recommendations included in the Water Master Plan	Master Plan Items	Project	Year	Estimated Cost (VAT Excl.)	
	666m x 355mm dia. upgrade existing gravity (Existing MIG application)	BPS27.4A	PRJ-BPS-010	2021	R2 450 000	
	619m x 355mm dia. upgrade existing gravity (Existing MIG application)	BPS27.4B BPS27.4C	PRJ-BPS-010 PRJ-BPS-010	2021	R2 286 000 R2 362 000	
	640m x 355mm dia. upgrade existing gravity (Existing MIG application) 1970m x 250mm dia. new gravity when FDA P35 develops	BPS27.40 BPS27.11	PRJ-BPS-010 PRJ-BPS-023	2021 2021	R2 362 000 R4 238 000	
	693m x 160mm dia. upgrade existing gravity when FDA P30 develops					
	(Investigate first)	BPS32.2	PRJ-BPS-006	2021	R1 483 000	
	523m x 160mm dia new gravity when FDA P100 develops	BPS32.3	PRJ-BPS-006	2021	R1 092 000	
	873m x 200mm dia. upgrade existing gravity when FDA P100 develops (Investigate first)	BPS32.4	PRJ-BPS-006	2021	R2 077 000	
	432m x 250mm dia. upgrade existing gravity when FDA P100 develops (Investigate first)	BPS32.5	PRJ-BPS-006	2021	R1 241 000	
	864m x 160mm dia. new gravity when FDA P100 develops	BPS46.3	PRJ-BPS-016	2021	R1 772 000	
	85m x 315mm dia. upgrade existing gravity when overflow problems occur (Investigate first)	BPS4.1	PRJ-BPS-008	2022	R484 000	
	48m x 400mm dia. upgrade existing gravity when overflow problems occur (Investigate first)	BPS4.2	PRJ-BPS-008	2022	R390 000	
	502m x 315mm dia. upgrade existing gravity when overflow problems occur	BPS12.5	PRJ-BPS-008	2022	R2 248 000	
	50m x 200mm dia. upgrade existing gravity when overflow problems occur (Investigate first)	BPS12.6	PRJ-BPS-008	2022	R272 000	
	344m x 355mm dia. upgrade existing gravity when overflow problems occur (Investigate first)	BPS12.7	PRJ-BPS-008	2022	R1 725 000	
	360m x 525mm dia. upgrade existing gravity when overflow problems occur (Investigate first)	BPS12.8	PRJ-BPS-008	2022	R2 470 000	
	114m x 525mm dia. upgrade existing gravity when overflow problems occur (Investigate first)	BPS12.9	PRJ-BPS-008	2022	R904 000	
	142m x 675mm dia. upgrade existing gravity when overflow problems occur	BPS27.12	PRJ-BPS-020	2022	R1 521 000	
	68m x 200mm dia. upgrade existing gravity when overflow problems occur (Investigate first)	BPS20.1	PRJ-BPS-009	2023	R329 000	
	8m x 400mm dia. upgrade existing gravity when overflow problems occur (Investigate first)	BPS20.2	PRJ-BPS-009	2023	R185 000	
	33m x 315mm dia. upgrade existing gravity when overflow problems occur (Investigate first)	BPS21.1	PRJ-BPS-009	2023	R265 000	
	210m x 400mm dia. upgrade existing gravity when overflow problems occur (Investigate first)	BPS21.2	PRJ-BPS-009	2023	R1 226 000	
	2 229m X 250mm dia. new gravity when future Wittedrift PS1 is constructed	BPS51.3	PRJ-BPS-058	2023	R5 870 000	
	958m x 250mm dia. new gravity when future Wittedrift PS2 is constructed	BPS51.6	PRJ-BPS-058	2023	R2 556 000	
	14m x 250mm dia. new gravity to divert flow from old Wittedrift PS when new Wittedrift PS and downstream infrastructure has been constructed	BPS51.7	PRJ-BPS-058	2023	R93 000	
	27m x 160mm dia. new gravity to diververt flow and decommission pump station when Wittedrift PS and downstream infrastructure has been constructed	BPS51.8	PRJ-BPS-058	2023	R104 000	
	1 333m x 160mm dia. new gravity when FDAs P5 and P7 develop	BPS11.1	PRJ-BPS-014	2025	R2 191 000	
	918m x 160mm dia. new gravity when FDAs P5 and P7 develop	BPS11.2	PRJ-BPS-014	2025	R1 525 000	
	422m x 200mm dia. new gravity when FDAs P5 and P7 develop	BPS11.3	PRJ-BPS-014	2025	R823 000	
	1062m x 250mm dia. new gravity when FDAs P5 and P7 develop	BPS11.4	PRJ-BPS-014	2025	R2 310 000	
	190m x 315mm dia. new gravity when FDAs P5 and P7 develop	BPS11.5	PRJ-BPS-014	2025	R550 000	
	20m x 400mm dia. new gravity when FDAs P5, P7 and P8 develop	BPS11.7	PRJ-BPS-034	2025	R136 000	
	270m x 160mm dia. new gravity when FDAs P27 and P30 develop	BPS26.1	PRJ-BPS-055	2025	R484 000	
	357m x 200mm dia. new gravity when FDAs P27, P29 and P30 develop 633m x 250mm dia. new gravity when FDAs P27, P29 and P30 develop	BPS26.2 BPS26.3	PRJ-BPS-055 PRJ-BPS-055	2025 2025	R705 000 R1 401 000	
	950m x 160mm dia. new gravity when FDAs P27, P29 and P30 develop	BPS26.4	PRJ-BPS-055	2025	R1 401 000 R1 576 000	
	336m x 200mm dia. new gravity when FDAs P27 and P30 develop	BPS26.4 BPS26.5	PRJ-BPS-055 PRJ-BPS-055	2025	R1576 000 R667 000	
	104m x 315mm dia. new gravity when FDAs P27, P28 and P30 develop develop	BPS26.6	PRJ-BPS-055	2025	R328 000	
	86m x 400mm dia. new gravity when FDAs P27, P28, P29 and P30 develop	BPS26.7	PRJ-BPS-055	2025	R350 000	
	247m x 160mm dia. new gravity when FDA P27 develops	BPS26.13	PRJ-BPS-055	2025	R447 000	
	194m x 160mm dia. new gravity when FDA P60 develops	BPS28.1	PRJ-BPS-025	2025	R362 000	
	284m x 160mm dia. new gravity when FDA P104 develops	BPS37.7	PRJ-BPS-053	2025	R616 000	

		Master			Estimated
Scheme	Recommendations included in the Water Master Plan	Plan Items	Project	Year	Cost (VAT Excl.
	60m x 200mm dia. upgrade existing gravity when overflow problems occur (Investigate first)	BPS2.1	PRJ-BPS-031	2030	R301 0
	130m x 160mm dia. new gravity when FDA P47 develops	BPS16.1	PRJ-BPS-040	2030	R259 0
	242m x 160mm dia. new gravity when FDA P45 develops	BPS17.1	PRJ-BPS-039	2030	R439 0
	289m x 200mm dia. new gravity when FDA P27 develops	BPS26.10	PRJ-BPS-056	2030	R581 (
	51m x 825mm dia. upgrade existing gravity when overflow problems occur (Investigate first)	BPS27.1	PRJ-BPS-003	2030	R894 (
	135m x 400mm dia. upgrade existing gravity when overflow problems occur (Investigate first)	BPS27.2	PRJ-BPS-003	2030	R839 (
	67m x 600mm dia. upgrade existing gravity when overflow problems occur (Investigate first)	BPS27.3	PRJ-BPS-003	2030	R692 (
	296m X 160mm dia. new gravity when FDAs P78 and P79 develop	BPS39.2	PRJ-BPS-015	2030	R526 (
	318m x 160mm dia. new gravity when FDAs P78, P79 and P80 develop	BPS39.3	PRJ-BPS-015	2030	R562 (
	1 860m x 250mm dia. new gravity to accommodate future areas in Kranshoek region (Implement when Kranshoek bulk outfall sewer reaches capacity)	BPS12.11	PRJ-BPS-033	2035	R4 005 (
	1 374m x 315mm dia. new gravity to accommodate future areas in Kranshoek region (Implement when Kranshoek bulk outfall sewer reaches capacity)	BPS12.12	PRJ-BPS-033	2035	R3 586 (
	1 289m x 400mm dia. new gravity to accommodate future areas in Kranshoek region (Implement when Kranshoek bulk outfall sewer reaches capacity)	BPS12.13	PRJ-BPS-033	2035	R4 288 (
	3 035m x 600mm dia. new gravity to accommodate future areas in Kranshoek region (Implement when Kranshoek bulk outfall sewer reaches capacity)	BPS12.14	PRJ-BPS-002	2035	R14 145 (
	1 244m x 400mm dia. new gravity when existing bulk sewer can no longer accommodate flow from future areas P5, P7 and P8	BPS12.17	PRJ-BPS-032	2035	R4 139
	446m X 160mm dia. new gravity when future areas P24 and P25 develops	BPS13.6	PRJ-BPS-042	2035	R767
	276m X 160mm dia. new gravity when FDA P78 develops	BPS39.1	PRJ-BPS-015	2035	R495
	1 037m X 160mm dia. new gravity. Option dependent on when PRJ- BPS-002 is implemented (Cost to developer)	BPS50.1	PRJ-BPS-018	2035	
	92m x 160mm dia. new gravity. Option dependent on when PRJ-BPS- 002 is implemented (Cost to developer)	BPS50.2	PRJ-BPS-018	2035	
	521m x 250mm dia. new gravity to accommodate future areas in Kranshoek region (Implement when Kranshoek bulk outfall sewer reaches capacity)	BPS12.10	PRJ-BPS-036	2036	R1 163 (
	347m x 200mm dia. new gravity when FDA P8 develops	BPS11.6	PRJ-BPS-014	2040	R688
	499m x 250mm dia. new gravity when FDA P11 develops	BPS13.2	PRJ-BPS-042	2040	R1 115 (
	290m x 250mm dia. new gravity when FDAs P11 and P22 develop	BPS13.3	PRJ-BPS-042	2040	R672 (
	14m x 250mm dia. new gravity when FDAs P11, P22, P24 and P25 develop	BPS13.4	PRJ-BPS-042	2040	R87 (
	455m x 160mm dia. new gravity when FDA P25 develops	BPS13.5	PRJ-BPS-042	2040	R781 (
	71m x 160mm dia. new gravity when FDA P64 and P65 develop	BPS31.2	PRJ-BPS-030	2040	R164 (
	162m x 160mm dia. new gravity when FDAs P76 and P77 develop	BPS37.1	PRJ-BPS-053	2040	R311 (
	374m x 160mm dia. new gravity when FDAs P75, P76 and P77 develop	BPS37.2	PRJ-BPS-053	2040	R651 (
	248m x 200mm dia. new gravity when FDAs P71, P75, P76 and P77 develop	BPS37.3	PRJ-BPS-052	2040	R505 (
	6m x 160mm dia. new gravity to divert flow when future gravity sewer line is constructed. PS can be abandoned.	BPS37.8	PRJ-BPS-052	2040	R62
	146m x 160mm dia. new gravity when FDAs P83 and P84 develop	BPS39.5	PRJ-BPS-015	2040	R285 (
	93m x 200mm dia. upgrade existing gravity when overflow problems occur	BPS39.6	PRJ-BPS-015	2040	R404 (
	370m x 160mm dia. new gravity when FDA P83 develops	BPS39.4	PRJ-BPS-015	2045	R645 (
	371m x 160mm dia. new gravity when FDA P64 develops	BPS31.1	PRJ-BPS-030	2050	R647 (
	307m x 160mm dia. new gravity when FDA P73 develops	BPS37.4	PRJ-BPS-053	2050	R544 (
	Sub Total				R112 325
ettenberg	862m x 250mm dia. upgrade existing rising when Kwanokuthula PS1 is upgraded	BPS25.12	PRJ-BPS-010	2021	R2 955 (
ay rising	699m x 90mm dia. new rising when future PS 23 is constructed	BPS46.2	PRJ-BPS-016	2021	R654 (
ains	490m x 200mm dia. upgrade existing rising when PS 8 requires	BPS4.4	PRJ-BPS-008	2022	R1 373 (

					Estimated	
cheme	Recommendations included in the Water Master Plan	Master Plan Items	Project	Year	Cost (VAT Exc	
	5761m x 355mm dia. upgrade existing rising when Aventura PS overflows due to existing rising main capacity	BPS34.2	PRJ-BPS-020	2022	R22 822 0	
	1502m x 200mm dia. new rising when future Wittedrift PS1 is constructed	BPS51.2	PRJ-BPS-058	2023	R2 654 (
	940m x 200mm dia. new rising when future Wittedrift PS 2 is constructed	BPS51.5	PRJ-BPS-058	2023	R1 669 (
	1230m x 250mm dia. new rising when future PS2 is constructed (Rising main can be linked to Kranshoek bulk as interim solution)	BPS11.9	PRJ-BPS-034	2025	R2 909 (
	1011m x 250mm dia. new rising when Ladywood PS1 is constructed (Includes N2 road crossing)	BPS26.9	PRJ-BPS-054	2025	R2 396 (
	1197m x 110mm dia. new rising when future PS9 is constructed	BPS28.3	PRJ-BPS-025	2025	R1 198	
	315m x 90mm dia. new rising when future PS11 is constructed	BPS30.2	PRJ-BPS-029	2025	R302	
	657m x 90mm dia. new rising when future PS 18 is constructed	BPS92.2	PRJ-BPS-024	2025	R615	
	416m x 90mm dia. new rising when future PS 3 is constructed (Cost to developer)	BPS14.2	PRJ-BPS-047	2030		
	468m x 600mm dia. upgrade existing rising main when pump upgrade is implemented (BPS17.2)	BPS17.3	PRJ-BPS-003	2030	R4 351	
	842m x 90mm dia. new rising when future PS5 is constructed (Cost to developer)	BPS18.2	PRJ-BPS-048	2030		
	106m x 90mm dia. new rising when future PS6 is constructed (Cost to developer)	BPS19.2	PRJ-BPS-049	2030		
	213m x 160mm dia. new rising when Ladywood PS2 is constructed	BPS26.12	PRJ-BPS-056	2030	R308	
	1124m x 90mm dia. new rising when Ladywood PS3 is constructed	BPS26.15	PRJ-BPS-057	2030	R1 043	
	470m x 160mm dia. new rising when future PS12 is constructed. N2 crossing required.	BPS31.4	PRJ-BPS-028	2030	R656	
	269m x 90mm dia. new rising when future PS20 is constructed (Cost to developer)	BPS43.2	PRJ-BPS-044	2030		
	841m x 550mm dia. upgrading existing rising when pump upgrade is implemented (BPS12.15)	BPS12.16	PRJ-BPS-038	2035	R6 521	
	859m x 550mm dia. upgrade existing rising main when pump upgrade is implemented (BPS13.7)	BPS13.8	PRJ-BPS-037	2035	R6 646	
	561m x 600mm dia. upgrade existing rising main when pump upgrade is implemented (BPS16.2)	BPS16.3	PRJ-BPS-037	2035	R5 033	
	927m x 90mm dia. new rising when future PS8 is constructed (Cost to developer)	BPS24.2	PRJ-BPS-046	2035	1	
	949 x 90mm dia. new rising when future PS10 is constructed (Cost to developer)	BPS29.2	PRJ-BPS-027	2035		
	598m x 200mm dia. new rising main from Kranshoek PS4 to new Kranshoek bulk sewer in order to created additional capacity in the existing downstream infrastructure.	BPS12.18	PRJ-BPS-036	2036	R1 070	
	570m x 110mm dia. new rising when future PS4 is constructed (Cost to developer)	BPS15.2	PRJ-BPS-041	2040		
	829m x 160mm dia. upgrade existing rising when Sanderlings PS is upgraded (Investigate first)	BPS35.2	PRJ-BPS-050	2040	R1 920	
	503m x 90mm dia. new rising when future PS14 is constructed (Cost tot developer)	BPS36.2	PRJ-BPS-051	2040		
	636m x 110mm dia. new rising when future PS15 is constructed	BPS37.6	PRJ-BPS-052	2040	R643	
	1680m x 355mm dia. new rising including river-crossing (Existing 200mm dia. rising main is in a poor condition and should be replaced)	BPS38.2	PRJ-BPS-004	2040	R6 673	
	1032m x 90mm dia. new rising when future PS17 is constructed (Cost to developer)	BPS42.2	PRJ-BPS-012	2040		
	368m x 90mm dia. new rising when future PS21 is constructed (Cost to developer)	BPS44.2	PRJ-BPS-026	2040		
	640mm x 90mm dia. new rising when future PS22 is constructed (Cost to developer)	BPS45.2	PRJ-BPS-026	2040		
	1544m x 90mm dia. new rising when future PS7 is constructed (Cost to developer)	BPS23.2	PRJ-BPS-045	2045		
	221m x 90mm dia. new rising when future PS 16 is constructed (Cost to developer)	BPS11.11	PRJ-BPS-035	2045		
	2119m x 200mm dia. new rising when future PS13 is constructed (Cost to developer)	BPS33.2	PRJ-BPS019	2050		
	804m x 110mm dia new rising when future PS1 is constructed (Cost to developer)	BPS7.2	PRJ-BPS-043	2050		
	Sub Total				R74 411	

Table 3.2.8.	Table 3.2.8.1: Future bulk sewer pipeline and sewer drainage network infrastructure required						
Scheme	Recommendations included in the Water Master Plan Project Year Items						
Kurland gravity mains and network	Sub Total			·	R1 636 000		
	1084m x 160mm dia new rising	BKS2.2	PRJ-BKS-003	2021	R1 488 000		
Kurland rising mains	Abandon existing rising main when future Kurland PS K1 is implemented	BKS.B3	PRJ-BKS-003	2021	-		
	Sub Total				R1 488 000		
Total					R189 860 000		

The recommended O&M activities for the bulk and sewer drainage networks, as included under Section 4.1.9, to be implemented by Bitou Municipality.

3.2.9 Sewer pump stations

Based on the most likely land-use development scenario, it will be necessary for the following new sewer pump stations, as well as upgrading of the existing sewer pump stations:

Table 3.2.9.1	I: Future sewer pump stations required		
Town	Recommendations included in the Sewer Master Plan	Year	Estimated Cost (VAT Excl.)
	Upgrade Kranshoek PS 3 to 3.5 l/s (Investigate first) (BPS5.5)	2021	R24 000
	New 3.5 l/s PS when FDA-P100 develops (BPS46.1)	2021	R1 055 000
	Upgrade Kwanokuthula PS 1 to 62 l/s (Required to accommodate future developments) (BPS25.11)	2021	R820 000
	Upgrade existing PS to 12 l/s to accommodate future demand (Investigate first) (BPS25.13)	2021	R24 000
	Upgrade PS to 5 l/s if required (Investigate first) (BPS25.14)	2021	R24 000
	Upgrade Wittedrift PS to 12 l/s when FDA-P100 develops (BPS32.1)	2021	R442 000
	Upgrade PS8 to 35 l/s when PS overflows (Investigate first) (BPS4.3)	2022	R641 000
	Downgrade PS3 to 30 l/s when downstream PS2 or sewer overflows (BPS20.3)	2023	R217 000
	New 20 l/s future Wittedrift PS1 (Required to accommodate ultimate demand. Alternative to pumping to Aventura PS) (BPS51.1)	2023	R1 955 000
	New 25 l/s future Wittedrift PS2 (Required when future Wittedrift PS1 is constructed) (BPS51.4)	2023	R2 104 000
	New 10 l/s Future PS 9 (Required for FDA P58 and P60) (BPS28.2)	2025	R1 658 000
	New 5 I/s Future PS 11 (Required for FDA P67 and P68) (BPS30.1)	2025	R1 508 000
	New 3.5 l/s pump station when FDA-P91 & P92 develop (BPS92.1)	2025	R1 055 000
	New 40 l/s future PS 2 when FDA P5, P7, P8 develop (BPS11.8)	2025	R2 542 000
	New 55 l/s future Ladywood PS 1 when FDA P27, P28, P29 and P30 develop (BPS26.8)	2025	R2 974 000
	New 14 l/s future Ladywood PS 2 when FDA P27 develop (BPS26.11)	2030	R1 777 000
Plettenberg	New 4 I/s future Ladywood PS 3 when FDA P27 develop (BPS26.14)	2030	R1 206 000
Bay	New 3.5 l/s PS when FDA-P51 develop (Cost to the developer) (BPS43.1)	2030	-
	New 3.5 l/s PS when FDA-P21 develop (Cost to the developer) (BPS14.1)	2030	-
	New 3.5 I/s PS when FDA-P20 develop (Cost to the developer) (BPS18.1)	2030	-
	New 3.5 I/s PS when FDA-P19 develop (Cost to the developer) (BPS19.1)	2030	-
	New 13 l/s future PS P12 when FDA P64, P65, P66, P67, P68 develop (BPS31.3)	2030	R1 748 000
	Downgrade PS10 to 7 l/s - Only required if downstream sewer overflows (Investigate first) (BPS3.1)	2030	R159 000
	Upgrade Piesang Valley PS 18 to 305 l/s (BPS17.2)	2030	R2 333 000
	Upgrade Piesang Valley PS 20 to 288 l/s (BPS13.7)	2035	R2 333 000
	Upgrade Piesang Valley PS 19 to 300 l/s (BPS16.2)	2035	R2 333 000
	Upgrade Piesang Valley PS 5 to 250 l/s (BPS12.15)	2035	R2 138 000
	New 3.5 I/s PS when FDA-P34 develop (Cost to the developer) (BPS24.1)	2035	-
	New 3.5 I/s PS when FDA-P68 develop (Cost to the developer) (BPS29.1)	2035	-
	New 3.5 I/s PS when FDA-P77 develop (Cost to the developer) (BPS36.1)	2040	-
	New 10 l/s future PS P15 when FDA P71, P73, P75, P76, P77 develop (BPS37.5)	2040	R1 658 000
	Upgrade Matjiesfontein PS to 70 l/s (BPS38.1)	2040	R880 000
	New 7 l/s PS when FDA-P46 develop (Cost to the developer) (BPS15.1)	2040	-
	New 4 l/s PS when FDA-P11 develop (Cost to the developer) (BPS42.1)	2040	-

2020-06-30/Bitou Municipality/WSDP for Client

Table 3.2.9	1: Future sewer pump stations required		
Town	Recommendations included in the Sewer Master Plan	Year	Estimated Cost (VAT Excl.)
	New 3.5 l/s PS when FDA-P60 develop (Cost to the developer) (BPS44.1)	2040	-
	New 4.5 I/s PS when FDA-P60 develop (Cost to the developer) (BPS45.1)	2040	-
	Upgrade Sanderlings PS to 14 l/s when FDA-P71 develop (Investigate first) (BPS35.1)	2040	R24 000
	New 3.5 l/s PS when FDA-P33 develop (Cost to the developer) (BPS23.1)	2045	-
	New 3.5 l/s PS when FDA-P10 develop (Cost to the developer) (BPS11.10)	2045	-
	Upgrade Aventura PS to 120 l/s (BPS34.1)	2050	R1 244 000
	New 25 I/s PS when FDA-P70 develop (Cost to the developer) (BPS33.1)	2050	-
	New 8.5 l/s PS when FDA-P15 develop (Cost to the developer) (BPS7.1)	2050	-
	Upgrade PS H3 to 20 I/s when FDA P15 develops (BPS8.1)	2050	R503 000
	Sub Total		R35 379 000
	New 25 I/s Kurland PS K1 when future area P96 develops. Existing Kurland PS1 can be abandoned and flow diverted to new PS (BKS.2.1).	2021	R2 104 000
	Decommission PS when future Kurland PS K1 is implemented (BKS.B2)	2025	R216 000
Kurland	Upgrade PS to 3.5 l/s if required. Verify existing PS capacity and dia. of rising main first (BKS.B4)	2025	R24 000
	Upgrade PS to 3.5 l/s if required. Verify existing PS capacity and dia. of rising main first (BKS.B5)	2025	R24 000
	Sub Total	•	R2 368 000
Total			R37 747 000

The recommended O&M activities for the sewer pump stations, as included under Section 4.1.8, to be implemented by Bitou Municipality.

3.2.10 Waste Water Treatment Works

The table below gives a summary of the existing capacities and current flows at each of the WWTWs	,
(MI/d).	

Table 3.2.10.1: E	Table 3.2.10.1: Existing capacities, flows and required future flows for the two WWTWs (MI/d)								
wwtw	Existing Hydraulic Capacity	Peak Month Average Daily Flow	Average Daily Flow (2018 – 2019)	Required Treatment Capacity (10 Year projected flow)	Final Effluent Compliance for 2018/2019				
Plettenberg Bay (Gansevlei)	9.000	4.387 (Sep)	3.690	7.328	Microbiological: 100.0% Chemical: 99.2% Physical: 100.0%				
Kurland	0.500	0.321 (Jun)	0.309	0.461	Microbiological: 100.0% Chemical: 97.1% Physical: 98.7%				

Bitou Municipality review on an annual basis the capacity and suitability of their WWTWs to meet the requirements of the authorisations and downstream users for the quality of the final effluent being discharged to the receiving water bodies. When the water quality requirements for the final effluent becomes stricter and / or when the inflow to the WWTW has increased to such an extent that the capacity of the plant needs to be increase, then the Municipality appoints reputed consulting engineering firms to undertake feasibility studies to perform technical and economical evaluation of the different options available for upgrading or extending the capacity of the treatment works.

The Plettenberg Bay (Gansevlei) WWTW: The WWTW has sufficient capacity to treat the existing and future short to medium term projected flow to the works. An upgrade will only be required within the next 10 - 15 years.

The Kurland WWTW: The WWTW has sufficient capacity to treat the existing and future short to medium term projected flow to the works. An upgrade will only be required within the next 10 - 15 years.

The WWTWs to be upgraded in Bitou Municipality are summarised in the table below:

Table 3.2.10.2: WWTWs to be upgraded in the future		
wwtw	Short, Medium, Long Term	Estimated Cost (Vat Excluded)
Upgrade Plettenberg Bay WWTW	Long	R32 300 000
Upgrade Kurland WWTW to 1.15 ML/day	Long	R17 251 000

Key issues to be addressed at the WTWs, as identified during the WSDP inspection process, are as follows:

- Plettenberg Bay (Gansevlei) WWTW:
 - > Inlet works: Mechanical wash screen compactor is not working.
 - > Anaerobic and Anoxic Reactors: Mixers are not working.
 - > Aeration: Additional floating aerator for periods of high ammoniac trip the power.
 - > RAS PS: Only two of the three pumps are working.
 - > PS for the return of effluent from the emergency storage pond needs to be refurbished.
 - > Disinfection: Chlorine scales are not working. Chlorine gas detector is not working.
 - > Flow metering: Final effluent flow meter is not working.
- Kurland WWTW: Sump for the treated effluent is required for the re-use pump station (irrigation).

The table below gives an overview of the recommended improvements for the WWTWs in Bitou Municipality's Management Area, as taken from the W_2RAP and identified during the WSDP inspection:

Component	Improvement Plan	Estimated Cost (Vat Excluded)
	Plettenberg Bay WWTW	
WWTW	New gensets are required for all electrical equipment.	R472 500
Inlet works	Mechanical wash screen compactor needs to be refurbished.	R200 000
Anaerobic and Anoxic Reactors	Mechanical mixers are not working and need to be refurbished.	R75 000
Aerobic Reactor	Refurbish additional floating aerator for periods of high ammoniac (Trip the power).	R30 000
Duran Chatiana	Refurbish one RAS pump currently not working.	R35000
Pump Stations	PS for the return of effluent from the emergency storage pond needs to be refurbished.	R500 000
Disinfection	Refurbish chlorine dosing equipment (Scales, Gas leak detector, etc.)	R70 000
Flow metering	Repair final effluent flow meter (Calibration)	R10 000
Sub Total	·	R1 212 500
	Kurland WWTW	
Final effluent	Install sump for the final treated effluent for the re-use pump station (irrigation)	R30 000
Sub Total		R30 000
Total		R1 242 500

The recommended O&M activities for the WWTWs, as included under Section 4.1.10, are to be implemented by Bitou Municipality.

3.3 WATER AND SANITATION SCHEMS

3.3.1 Water Schemes

Based on the most likely land-use development scenario, the following future water reticulation infrastructure components will be necessary:

 Table 3.3.1.1: Future water reticulation infrastructure required

Plettenberg Bay

Proposed distribution zones

- The boundaries between the existing Brakkloof reservoir zone and the Town PRV 4 zone are adjusted in order to improve network conveyance and redundancy.
- The Town PRV 4 zone, supplied with water from the Town Reservoirs, is increased to include future development areas P18 to P24.
- The boundaries between the existing Brakkloof reservoir zone and the Whale Rock reservoir zone are adjusted. It is proposed that the existing Whale Rock reservoir zone is augmented with water from the Quarry reservoir zone through a PRV (at the position of the old decommissioned Quarry BPT). Future development areas P16 & P17 are accommodated within the existing Whale Rock reservoir zone.
- The Brakkloof reservoir zone is increased to include the lower lying areas of future development area P14.
- The Quarry reservoir zone is increased to include future development areas P13 & P15 as well as the higher lying areas of future area P14.
- Two new zones are proposed for the future development areas between Kranshoek and the Quarry reservoir, viz. the new Roodefontein Upper and Lower reservoir zones. It is proposed that the Roodefontein Upper reservoir zone supplies the future development areas P4 P6, P97, P98 and the higher lying areas of future area P7, while the Roodefontein Lower reservoir zone supplies the lower lying areas of future development area P7 as well as future areas P8, P10 and P12.
- The boundary of the Kranshoek tower zone is adjusted so that the higher lying area to the north of the zone is incorporated in the proposed Roodefontein Upper reservoir zone.
- The boundary of the Town Upper tower zone is increased to accommodate future development area P51.
- The boundary of the Archiewood and Brackenridge reservoir zone is increased to accommodate future development areas P25, P40, P52, P53, P101, P102 and the lower lying erven of area P94.
- A new Archiewood PRV 2 zone is proposed for when future development area P43 develops, supplied with water from the Archiewood reservoir through a new PRV.
- A new Piesang Valley PRV zone is proposed for when future development area P46 develops, supplied with water from the Archiewood reservoir through a new PRV.
- It is proposed that the existing Kwanokuthula tower zone (which is currently supplied with water only from the Upper tower because the Lower tower has a leak) is supplied in future from only the Upper tower. An emergency valve (to be closed) is proposed between the supply from the Lower tower and the existing Kwanokuthula network. The zone boundary of the Kwanokuthula Upper tower zone is increased to accommodate future areas P31 P35 & P90.
- A new Kwanokuthula reservoir zone (supplied from the existing Kwanokuthula East (Lower) reservoirs) is proposed for the lower lying areas of future development areas P27 & P28 as well as future area P26.
- A new Kwanokuthula Lower tower zone (supplied from the existing Kwanokuthula East (Lower) tower) is proposed for the higher lying areas of future development areas P27 & P28 as well as future areas P29 & P30.
- A new tower (proposed New Horizon tower) is proposed next to the existing New Horizon reservoirs in order to accommodate future development areas P35 & P91. It is proposed that the higher lying erven in New Horizon (that is currently accommodated within the New Horizon reservoir zone) is incorporated in the proposed New Horizon tower zone. This will improve the low static pressure that exists currently within the higher lying erven in New Horizon.
- The boundary of the New Horizon reservoir zone is increased to accommodate future development areas P36, P44, P45 and P47 P50, P92 and the higher lying erven of area P94.
- A new Goose Valley booster zone is proposed for the higher lying areas of future development area P60.
- The boundary of the Goose Valley reservoir zone is increased to accommodate future development areas P56, P58, the lower lying areas of P60 as well as future areas P64 P69.
- The boundary of the Matjiesfontein reservoir zone is increased to accommodate future development areas P71 P82 & P104.
- A new Keurboomstrand Upper reservoir zone (supplied from the existing Keurboomstrand reservoir) is proposed for future development areas P85 P87.
- A new Keurboomstrand Upper booster zone (supplied from the proposed Keurboomstrand Upper reservoir) is proposed for future development areas P83 & P84.
- Three new distribution zones are proposed for the Hanglip, Roodefontein and Ganse Valley Estates.
- The boundary of the Wittedrift reservoir zone is increased to accommodate future development areas P61 P63 & P99.
- A new Green Valley booster zone is proposed for when the higher lying future area P100 develops in Green Valley. It is proposed that this booster zone is supplied with water from a new Green Valley reservoir.
- It is proposed that the existing Green Valley reservoirs and elevated tank are decommissioned and that the existing Green Valley reservoir and tower zones are supplied from the new Green Valley reservoir when it is commissioned. Two new PRV's are proposed to reduce static pressures at the lower lying erven when these erven are incorporated within the proposed new Green Valley reservoir zone.
- Future area P54 should be accommodated within the existing Town Reservoir zone and future area P55 within the existing Town PRV 1 zone.

Table 3.3.1.1: Future water reticulation infrastructure required
Proposed future system and required works
• The most significant upgrades of the existing distribution system is the alteration of the existing zone boundaries between the Town PRV 4, Brakkloof reservoir, Whale Rock reservoir, Kwanokuthula tower and New Horizon reservoir zones in order to improve operation of the existing system.
 The alteration of the existing zone boundaries between the Town PRV 4, Brakkloof reservoir and Whale Rock reservoir zones will improve network conveyance and redundancy in the system.
• The alteration of the zone boundary of the New Horizon reservoir zone together with the implementation of the New Horizon tower zone will improve the low static pressures that is currently experienced in the higher lying erven of the New Horizon reservoir zone.
 A new PRV is proposed at the position of the existing Quarry BPT (that is decommissioned) in order to improve the capacity of the existing system to provide fire flow to Robberg Estate and Whale Rock Beach.
• A number of distribution pipelines are also required to reinforce water supply within the Plettenberg Bay distribution network and supply future development areas when they develop.
Kurland
Proposed distribution zones
• The only change to the existing distribution zone is that the existing boundary of the existing zone is increased to accommodate future development areas.
Proposed future system and required works
 A new bulk supply pipeline from the Kurland reservoirs to the town is proposed in order to reinforce water supply to the Kurland network. The implementation of this project will improve low water pressures in Kurland that are currently experienced during periods of high demand.
• Upgrading of the existing Kurland distribution network is proposed in order to accommodate housing developments on Erf 562.
Natures Valley
Proposed distribution zones
 There are no changes to the existing distribution zones of Natures Valley.
- •
Proposed future system and required works

• Two reinforcement pipelines are proposed to improve the conveyance in the network.

The water master plan figures and tables are included in Annexure A.

3.3.2 Sanitation Schemes

Based on the most likely land-use development scenario, the following further sewer reticulation infrastructure components will be necessary:

Table 3.3.2.1: Future sewer reticulation infrastructure required

Plettenberg Bay

- The boundaries of the existing drainage areas in Plettenberg Bay are increased to accommodate proposed future development areas that fall within these drainage areas.
- The main outfall sewer that gravitates to Kranshoek PS 1 should be upgraded if overflow problems occur.
- A new main outfall sewer (items BPS12.10 BPS12.14) is proposed for future development areas P4, P6, the northern areas of P7, P10, P12, P13 & P14. This outfall sewer should gravitate to the existing Piesang Valley 5 PS. It is proposed that flow from the Kranshoek PS 4 is in future diverted to this new bulk sewer (through the implementation of master plan item BPS12.18) in order to create additional capacity in the existing bulk sewer between Kranshoek and the Piesang Valley PS 5.
- A new internal pump station and rising main should be constructed for the southern portion of future area P10 that cannot gravitate to the proposed Kranshoek bulk sewer.
- A new Future PS P2 drainage area is proposed for the future development areas P5, P8, P9 and the southern areas of P7. A new pump station and rising main should be constructed for this drainage area that discharges into the drainage area of the Piesang Valley 5 PS (discharges into the proposed new bulk sewer from Kranshoek through master plan items BPS11.9 & BPS12.17).
- A new internal pump station (Future PS P17) and rising main should be constructed for the southern portion of future area P11 that cannot gravitate in a northern direction towards the Piesang Valley PS 20.
- The option should be investigated to in future (after the new Kranshoek bulk sewer is constructed) abandon the proposed Future PS P17 and Brackenridge pump stations 1, 2 & 3 and divert flow from the upstream drainage areas to the proposed Kranshoek bulk sewer.
- A new Future PS P1 drainage area is proposed for future development area P15. A new pump station and rising main should be constructed for this drainage area that discharges into PS H3. When overflow problems occur at PS H3, the pumps should be upgraded according to the sewer master plan.
- The main outfall sewer that gravitates to PS 11 should be upgraded if overflow problems occur.
- PS 10 should be downsized to a capacity of 7 l/s if overflow problems occur between PS 9 and PS 10.
- If overflow problems occur at the main outfall sewer that drains towards PS 8, this outfall sewer should be upgraded. When
 overflow problems occur at PS 8, the pumps should be upgraded to a capacity of 35 l/s and the rising main upgraded to a

Table 3.3.2.1: Future sewer reticulation infrastructure required

diameter of 200 mm. If overflow problems occur in the main gravity outfall sewer into which the rising main of PS 8 discharges, this outfall sewer should be upgraded according to the master plan.

- When the Piesang Valley 5 pumping station reaches capacity the pump station should be upgraded to a capacity of 250 l/s and the existing rising main replaced with a new dedicated 500 mm diameter rising main that discharges into the Piesang Valley 20 PS (alternatively the existing 350 mm rising main can be reinforced with a new 350 mm diameter parallel rising main).
- A new Future PS P3 drainage area is proposed for future development area P21. A new pump station and rising main should be constructed for this drainage area that discharges into the drainage area of the Piesang Valley 20 PS.
- New main outfall sewers are proposed for future development areas P11 & P22 P25. These outfall sewers should gravitate to the existing Piesang Valley 20 PS. When the Piesang Valley 20 pumping station reaches capacity the pump station should be upgraded to a capacity of 290 l/s and the existing rising main replaced with a new 500 mm diameter rising main (alternatively the existing 350 mm rising main can be reinforced with a new 355 mm diameter parallel rising main).
- A new Future PS P4 drainage area is proposed for future development area P46. A new pump station and rising main should be constructed for this drainage area that discharges into the Piesang Valley 19 PS. When the Piesang Valley 18 pumping station is upgraded, the Piesang Valley 19 and 20 pump stations should be upgraded to a capacity of 300 l/s and their existing rising mains replaced with new 600 mm diameter rising mains (alternatively the existing 350 mm diameter rising mains should be reinforced with new 400 mm diameter parallel rising mains.
- New outfall sewers are proposed for future development areas P45 & P47 that gravitates to the Piesang Valley 18 & 19 pump stations.
- A new Future PS P20 drainage area is proposed for future development area P51. A new pump station and rising main should be constructed for this drainage area that discharges into the drainage area of PS1a.
- New Future PS P5 and P6 drainage areas are proposed for future development areas P19 & P20. New pump stations and rising mains should be constructed for these drainage areas that discharge into the drainage area of PS 4.
- If overflow problems occur at the main outfall sewers that drain towards PS 2 & 3, these outfall sewers should be upgraded.
- New Future PS P7 and P8 drainage areas are proposed for future development areas P33 & P34. New pump stations and rising mains should be constructed for these drainage areas that discharge into the drainage area of Kwanokuthula PS 1. New outfall sewers and pipe reinforcements are proposed for the Kwanokuthula PS 1 drainage area when future development areas P31 P34 develops. When the Kwanokuthula PS 1 reaches capacity the pump station should be upgraded to a capacity of 62 I/s and the rising main upgraded to a diameter of 250 mm.
- Upgrading is proposed of the existing bulk sewer downstream of the Kwanokuthula PS 1 (master plan items BPS27.4A, B & C). This will be required in order to accommodate additional housing projects in Kwanokuthula as well as the future Ladywood development.
- A new Ladywood drainage area is proposed for future development areas P27 P30. A new Ladywood PS 1 with a capacity of 55 l/s and rising main should be constructed for this drainage area that discharges into the Ganse Valley WWTW Gravity drainage area.
- A new so-called "Ebenhaezer" bulk sewer is proposed in order to accommodate future development area P35.
- A new Future PS P18 drainage area is proposed for future development areas P91 & P92. A new pump station and rising main should be constructed for this drainage area that discharges into the proposed Ebenhaezer bulk sewer.
- A new Future PS P9 drainage area is proposed for future development areas P58 & P60. A new pump station and rising main should be constructed for this drainage area that discharges into the Gansevlei WWTW.
- New Future PS P10, P11 and P12 drainage areas are proposed for future development areas P64 P68. Future PS P12 should pump to Future PS P11, Future PS P11 to Future PS P10 and Future PS P10 to the existing Goose Valley Main PS.
- When the proposed housing development in Green Valley (future area P100) starts to develop it is proposed that the existing sewer infrastructure between the development and the Wittedrift PS is upgraded and that the Wittedrift PS is upgraded to a capacity of 12 l/s.
- The proposed capacity of 12 l/s for the Wittedrift PS is at the upper limit of what can be pumped to the Aventura PS through the 7,0 km 125 mm diameter rising main between the Wittedrift and Aventura pump stations.
- It is proposed that when the upgraded Wittedrift PS reaches capacity (as additional areas in Wittedrift and Green Valley develops) the rising main to Aventura is abandoned and new bulk infrastructure is constructed in order to pump directly from Wittedrift to the Gansevlei WWTW (see project BPS-058).
- A new Future PS P13 with a capacity of 25 l/s and a rising main that discharges into the Aventura PS is proposed for future development area P70.
- The capacity of the Aventura PS is currently limited to 32 l/s due to the capacity of the downstream 5,8 km rising main. It is proposed that the existing 200 mm diameter rising main is upgraded to a 355 mm diameter rising main. This will improve the capacity of the Aventura PS from 32 l/s to 78 l/s.
- When the Aventura PS reaches capacity in future as development of upstream developments commence, it is proposed that the pumps in the pump station are upgraded to a capacity of 120 l/s.
- When future development area P71 develops the Sanderlings PS and rising main should be upgraded to a capacity of 14 l/s and a diameter of 160 mm.
- New Future PS P14 and P15 drainage areas are proposed for future development areas P71 P77. Future PS P14 should pump to the drainage area of Future PS P15 and Future PS P15 to the existing Matjiesfontein PS. It is proposed that the existing Plettenberg Manor PS is decommission and sewage from the upstream drainage area is diverted to the proposed Future PS P15.
- When the Matjiesfontein PS reaches capacity it should be upgraded to a capacity of 70 l/s. The existing 200 mm diameter rising main is in a bad state of repair and should be replaced with a new 315 mm diameter rising main.
- New outfall sewers are proposed for future development areas P78 P80, P83 & P84 in the Keurboomstrand Main drainage area.

Table 3.3.2.1: Future sewer reticulation infrastructure required

- Kurland
- The existing Kurland PS 1 drainage area is increased to accommodate future development area P95 to the north of Kurland that fall within this drainage area.
- A new Future PS K1 drainage area is proposed for future development area P96 (± 1 500 erven on a portion of Erf 562 to the south of Kurland). A new pump station and rising main to the Kurland WWTW should be constructed for this purpose.
- No layout information was available for future development area P96, but from the topographical information it seems that it will be possible to abandon the existing Kurland pump station 1 in future (after the proposed Future PS K1 is constructed) and re-direct flow from the upstream drainage area to the Future PS K1.
- It is therefore proposed that when future area P96 develops Future PS K1 should be constructed on a site downstream of
 future area P96 and Kurland PS 1 so that the total flow from future area P96 and the existing Kurland PS 1 drainage area can
 gravitate towards the proposed PS (see project BKS-003).
- The option should also be investigated to abandon the Kurland PS 2 and re-direct flow from the upstream drainage area towards the proposed Future PS K1.

Natures Valley

• There is currently no sewer network in Natures Valley and the existing erven are serviced through septic tanks. No provision is made in the sewer master plan to service these erven with a waterborne sanitation system in the future. This option should however be investigated.

The proposed future sewer pump stations are also indicated on the schematic layouts in Annexure C of the Administration, Information and Comprehensive Overview Report. The sewer master plan figures and tables are included in Annexure A.